Mostrar el registro sencillo

dc.contributor.authorRodríguez de Lope López, Laura
dc.contributor.authorMaestre Muñoz, Víctor Manuel 
dc.contributor.authorDíez Fernández, Luis Francisco 
dc.contributor.authorOrtiz Sainz de Aja, Alfredo 
dc.contributor.authorAgüero Calvo, Ramón 
dc.contributor.authorOrtiz Uribe, Inmaculada 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-09-11T08:04:37Z
dc.date.available2025-09-11T08:04:37Z
dc.date.issued2025-08-19
dc.identifier.issn2644-1268
dc.identifier.otherTED2021-129951B-C22es_ES
dc.identifier.otherTED2021-129951B-C21es_ES
dc.identifier.otherPID2021-125725OB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/37114
dc.description.abstractAs the urgency to mitigate climate change intensifies, the residential sector, a significant contributor to greenhouse gas emissions, calls for innovative solutions to foster decarbonization efforts. The integration of renewable energy sources and hydrogen-based technologies offers a promising pathway to achieve energy independence and so reduce reliance on traditional power grids. In this sense, digital twins, powered by artificial intelligence techniques, offer significant potential to enhance the performance of these systems, fostering energy self-sufficiency. This article presents a comprehensive architecture for a digital twin of residential hydrogen-based energy systems. We discuss the implementation of the digital replica based on both logical behavior and machine learning techniques. The resulting models are validated using real data collected from an electrically self-sufficient social housing in Spain, located in the town of Novales (Cantabria). The results evince that the behavior of the proposed solution accurately mimics the one shown by the physical counterpart, suggesting its utility as a valuable instrument for enhancing the efficiency of renewable hydrogen-based energy systems.es_ES
dc.description.sponsorshipThis work was supported in part by the Spanish Government (Ministry of Science and Innovation) and the European Union (Next GenerationEU/RTRP) through the Projects “Digital twin of a hybrid solar photovoltaic-hydro hybrid system for residential supply” under Grant TED2021-129951B-C22, in part by the “Demonstration pilot of a solar-photovoltaic-hydrogen hybrid system for residential energy supply” under Grant TED2021-129951B-C21, in part by (Ministry Economic Affairs and Digital Transformation) “SITED: Semantically-enabled Interoperable Trustworthy Enriched Data-spaces” under Grant PID2021-125725OB-I00, and in part by the Government of Cantabria through the Project “Enabling Technologies for Digital Twins and their application in the chemical and communications sectors” (GDQuiC) of the TCNIC Program under Grant 2023/TCN/002.es_ES
dc.format.extent12 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers, Inc.es_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceIEEE Open Journal of the Computer Society, 2025, 6, 1317-1328es_ES
dc.subject.otherDigital twines_ES
dc.subject.otherModelinges_ES
dc.subject.otherEnergy efficiencyes_ES
dc.subject.otherHydrogenes_ES
dc.subject.otherNeural networkses_ES
dc.subject.otherRenewable energyes_ES
dc.titleA comprehensive aI-based digital twin model for residential hydrogen-based energy systemses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/OJCS.2025.3594439es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/TED2021-129951B-C21/ES/PILOTO DEMOSTRADOR DE UN SISTEMA HÍBRIDO SOLAR FOTOVOLTÁICA-HIDRÓGENO PARA EL ABASTECIMIENTO ENERGÉTICO EN EL AMBITO RESIDENCIAL/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-125725OB-I00/ES/ESPACIOS DE DATOS INTEROPERABLES Y CONFIABLES HABILITADOS SEMANTICAMENTE/es_ES
dc.identifier.DOI10.1109/OJCS.2025.3594439
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International