Mostrar el registro sencillo

dc.contributor.authorSainz Gutiérrez, José Joaquín 
dc.contributor.authorBecerra, Víctor M. 
dc.contributor.authorRevestido Herrero, Elías 
dc.contributor.authorLlata García, José Ramón
dc.contributor.authorAlonso Rentería, Luciano 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-09-09T15:20:16Z
dc.date.available2025-09-09T15:20:16Z
dc.date.issued2025-06
dc.identifier.issn1233-2585
dc.identifier.issn2083-7429
dc.identifier.otherTED2021-132158B-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/37097
dc.description.abstractIn this article, a modified L1-adaptive controller with auto-tuning using a genetic algorithm is presented for dynamic positioning of remotely operated vehicles (ROVs) under marine currents, based on a six-degree-of-freedom nonlinear model of an ROV. To enable tuning of some of the parameters of the controller, a cost function related to the error of the steady state positions of the system is minimised with the use of the genetic algorithm. A series of simulations are conducted to ascertain the performance of the system with the implemented controller, taking into consideration the vehicle position, orientation, and control signals sent as commands to the thrusters. The simulations are carried out with noise levels representative of those encountered by the standard underwater instrumentation on an ROV, as well as with underwater current velocities. In addition, the results are compared with those of a classical controller to verify the improvements offered by the controller proposed in this paper.es_ES
dc.description.sponsorshipThis project was partially supported through the project TED2021-132158B-I00, “Evolutionary Monitoring with Unmanned Underwater Vehicles for the Maintenance of the Bottom and Anchorages of Offshore Wind Farms”, funded by MICIU/ AEI /10.13039/501100011033, by the European Union - Next Generation EU/ PRTR, and through the project “Intelligent and Collaborative Control of Unmanned Underwater Vehicles for the Dynamic Positioning of Floating Marine Structures at Scale” (aid financed by contract programme Gob Cantabria-UC).es_ES
dc.format.extent9 p.es_ES
dc.language.isoenges_ES
dc.publisherDe Gruyteres_ES
dc.rights© 2025 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourcePolish Maritime Research, 2025, 32(2), 115-123es_ES
dc.subject.otherAuto-tuninges_ES
dc.subject.otherDynamic positioninges_ES
dc.subject.otherGenetic algorithmes_ES
dc.subject.otherModified L1-adaptivees_ES
dc.subject.otherROVes_ES
dc.titleAuto-tuning of a modified L1-adaptive controller with genetic algorithms for dynamic positioning of a remotely operated vehicle under marine currentses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.2478/pomr-2025-0026es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.2478/pomr-2025-0026
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2025 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2025 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.