Mostrar el registro sencillo

dc.contributor.authorBozonc, Alexandru Constantin
dc.contributor.authorGómez Coma, Lucía 
dc.contributor.authorDíaz Sainz, Guillermo 
dc.contributor.authorIrabien Gulías, Ángel 
dc.contributor.authorCormos, Ana Maria
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-09-04T12:23:59Z
dc.date.available2025-09-04T12:23:59Z
dc.date.issued2025-09-01
dc.identifier.issn1385-8947
dc.identifier.issn1873-3212
dc.identifier.otherPLEC2022-009398es_ES
dc.identifier.urihttps://hdl.handle.net/10902/37020
dc.description.abstractThis study integrates computational fluid dynamics (CFD) modeling with previously obtained experimental data to investigate the CO2 absorption process using hollow fiber membrane contactors (HFMCs) and ionic liquids (ILs). Two types of HFMCs, polysulfone (PS) and polypropylene (PP), were tested in combination with two ILs: [emim][Ac] and [emim][EtSO4]. The CFD models, developed using COMSOL Multiphysics, were validated against laboratory-scale experimental data. A strong correlation between the experimental and simulated results was observed, as indicated by high R2 values (0.9208 to 0.9844) and low RMSE values (1.4657 to 2.1479), confirming the model's accuracy in representing the actual process. Among the ILs studied, [emim][Ac] showed superior CO2 absorption efficiency due to its higher CO2 solubility compared to [emim][EtSO4]. Velocity and concentration profiles of both gas and liquid phases were determined, showcasing the ability of CFD modeling to predict key process parameters across the system geometry. Sensitivity analyses identified the optimal absorption temperature, membrane length, and gas velocity to achieve CO2 absorption efficiency exceeding 90 %. Results showed that increasing the absorption temperature and membrane length significantly enhances the process performance. Additionally, incorporating shell baffles improved absorption efficiency by approximately 5 %, though it resulted in a notable increase in liquid pressure drop across the shell.es_ES
dc.description.sponsorshipThe authors gratefully acknowledge financial support through projects: CCCDI - UEFISCDI: PN-IV-P8-8.1-PRE-HE-ORG-2024-0228, within PNCDI IV and PLEC2022-009398 (MCIN/AEI/10.13039/ 501100011033 and European Union Next Generation EU/PRTR).es_ES
dc.format.extent13 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceChemical Engineering Journal, 2025, 519, 165308es_ES
dc.subject.otherCO2 capturees_ES
dc.subject.otherCFDes_ES
dc.subject.otherHFMCes_ES
dc.subject.otherIonic liquidses_ES
dc.subject.otherNondispersive absorptiones_ES
dc.subject.otherMathematical modelinges_ES
dc.titleComputational fluid dynamics investigation of CO2 absorption using ionic liquids in hollow-fiber membrane contactorses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.cej.2025.165308es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.cej.2025.165308
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial 4.0 International