dc.contributor.author | Pereda Fernández, Santiago | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2025-09-02T09:31:00Z | |
dc.date.issued | 2025-07-09 | |
dc.identifier.issn | 2156-6674 | |
dc.identifier.other | TED2021-131763A-I00 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10902/36978 | |
dc.description.abstract | The estimation of Quantile Regression with Selection (QRS) requires the estimation of the entire quantile process several times to estimate the parameters that model self-selection. Moreover, closed-form expressions of the asymptotic variance are too cumbersome, making the bootstrap more convenient to perform inference. I propose streamlined algorithms for the QRS estimator that significantly reduce computation time through preprocessing techniques and quantile grid reduction for the estimation of the parameters. I show the optimization enhancements and how they can improve the precision of the estimates without sacrificing computational efficiency with some simulations. | es_ES |
dc.description.sponsorship | This work is part of the I + D + i project Ref. TED2021-131763A-I00 financed by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR. I gratefully acknowledge financial support from the Spanish Ministry of Universities and the European Union-NextGenerationEU (RMZ-18). | es_ES |
dc.format.extent | 23 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Walter de Gruyter | es_ES |
dc.rights | This is an accepted manuscript of an article published by De Gruyter in Journal of Econometric Methods on 09/07/2025, available at http://wwww.degruyter.com/10.1515/jem-2024-0022. It is deposited under the terms of the CreativeCommons Attribution-NonCommercial-NoDerivatives 4.0 International | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Journal of Econometric Methods, 2025, 14(1), 35-47 | es_ES |
dc.subject.other | Copula | es_ES |
dc.subject.other | Estimation algorithm | es_ES |
dc.subject.other | Linear programming | es_ES |
dc.subject.other | Quantile Regression with Selection | es_ES |
dc.subject.other | Rotated quantile regression | es_ES |
dc.title | Fast algorithms for Quantile Regression with Selection | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1515/jem-2024-0022 | es_ES |
dc.rights.accessRights | embargoedAccess | es_ES |
dc.identifier.DOI | 10.1515/jem-2024-0022 | |
dc.type.version | acceptedVersion | es_ES |
dc.embargo.lift | 2026-07-09 | |
dc.date.embargoEndDate | 2026-07-09 | |