Mostrar el registro sencillo

dc.contributor.authorFernández Maza, Christian 
dc.contributor.authorGonzález Lavín, Gloria
dc.contributor.authorGómez Coma, Lucía 
dc.contributor.authorFallanza Torices, Marcos 
dc.contributor.authorOrtiz Uribe, Inmaculada 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-08-26T08:31:27Z
dc.date.available2025-08-26T08:31:27Z
dc.date.issued2025-11-18
dc.identifier.issn1383-5866
dc.identifier.issn1873-3794
dc.identifier.otherPID2021-123120OB-I00es_ES
dc.identifier.otherPDC2022-133122-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/36936
dc.description.abstractThis work reports the optimization strategy for the design of a microfluidic platform to achieve the separation and recovery of aqueous mixtures of rare earth elements (REEs); the work showcases the separation of dysprosium, neodymium and lanthanum using microextraction modules with an organic phase constituted of Cyanex® 572 diluted in Shellsol® D70. An optimization model has been developed to assist in the design of the number of stages (microextractors, settling tanks and mixer and splitter units) and the best operational conditions that maximize the separation and recovery targets. Results predicted by the model with a configuration composed of 4 microreactors have been experimentally evaluated. Starting with 1 mM equimolar REE mixtures and 301 mM Cyanex® 572 as the organic phase, the model shows that REE recovery and concentration improve with an increasing number of microextractors. Using eight microextractors, along with optimised pH and recycling, recoveries exceed 92 %, purities reach 93 %, and concentrations are at least six times higher than the feed. The REEs extraction microfluidic platform has been 3D printed with a modular LEGO® type design that fa cilitates reconfiguration and scalability. Together with the optimisation model, this platform represents a valuable tool for the design and implementation of future critical element mixtures microextraction applications.es_ES
dc.description.sponsorshipThis work received financial assistance from project PID2021-123120OB-I00 funded by MICIU/AEI/ 10.13039/501100011033 and ERDF/EU, and project PDC2022-133122-I00 funded by MICIU/AEI/ 10.13039/501100011033 and the European Union NextGenerationEU/ PRTR. Gloria González-Lavín gratefully acknowledges grant FPU21/ 03297 funded by MICIU/AEI/10.13039/501100011033 and ESF+.es_ES
dc.format.extent11 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceSeparation and Purification Technology, 2025, 373, 133520es_ES
dc.subject.otherMicrofluidic platformes_ES
dc.subject.otherMultiphase reactiones_ES
dc.subject.otherProcess designes_ES
dc.subject.otherRare earths microextractiones_ES
dc.titleOptimized microfluidic platform for the selective recovery of critical materials from aqueous mixtureses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.seppur.2025.133520es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.seppur.2025.133520
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International