Mostrar el registro sencillo

dc.contributor.authorGutiérrez Gutiérrez, Jaime 
dc.contributor.authorJiménez Urroz, Jorge
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-07-21T14:29:12Z
dc.date.available2025-07-21T14:29:12Z
dc.date.issued2025-03
dc.identifier.issn0126-6705
dc.identifier.issn2180-4206
dc.identifier.urihttps://hdl.handle.net/10902/36810
dc.description.abstractLet q be a power of a prime p, Fq be the finite field with q elements, and Fq[x1,…,xn] be the ring of polynomials in n variables over Fq. The construction and study of local permutation polynomials of Fq[x1,…,xn] is recently increasing interest among the experts. In this work, we study local permutation polynomials of maximum degree n(q−2) defined over the prime finite field Fp. In particular, we explicitly construct families of such polynomials when p≥5 and n≤p−1; and for any q of the form q=ppr when r≥1 and p≥3.es_ES
dc.description.sponsorshipOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherUniversiti Sains Malaysiaes_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceBulletin of the Malaysian mathematical sciences society, 2025, 48(2), 40es_ES
dc.subject.otherPermutation polynomialses_ES
dc.subject.otherLocal permutation polynomialses_ES
dc.subject.otherFinite fieldses_ES
dc.subject.otherMultivariate polynomials ringes_ES
dc.titleLocal permutation polynomials of maximum degree over prime finite fieldses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1007/s40840-025-01825-5es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1007/s40840-025-01825-5
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International