Local permutation polynomials of maximum degree over prime finite fields
Ver/ Abrir
Registro completo
Mostrar el registro completo DCFecha
2025-03Derechos
Attribution 4.0 International
Publicado en
Bulletin of the Malaysian mathematical sciences society, 2025, 48(2), 40
Editorial
Universiti Sains Malaysia
Enlace a la publicación
Palabras clave
Permutation polynomials
Local permutation polynomials
Finite fields
Multivariate polynomials ring
Resumen/Abstract
Let q be a power of a prime p, Fq be the finite field with q elements, and Fq[x1,…,xn] be the ring of polynomials in n variables over Fq. The construction and study of local permutation polynomials of Fq[x1,…,xn] is recently increasing interest among the experts. In this work, we study local permutation polynomials of maximum degree n(q−2) defined over the prime finite field Fp. In particular, we explicitly construct families of such polynomials when p≥5 and n≤p−1; and for any q of the form q=ppr when r≥1 and p≥3.
Colecciones a las que pertenece
- D20 Artículos [473]