Mostrar el registro sencillo

dc.contributor.authorRobles Urquijo, Ignacio 
dc.contributor.authorBenavente Ponce, Juan
dc.contributor.authorGarcía Blanco, Javier
dc.contributor.authorDiego González, Pelayo
dc.contributor.authorLoayssa, Alayn
dc.contributor.authorSagues, Mikel
dc.contributor.authorRodríguez Cobo, Luis 
dc.contributor.authorCobo García, Adolfo 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-05-27T14:03:41Z
dc.date.available2025-05-27T14:03:41Z
dc.date.issued2025-05-07
dc.identifier.issn2076-3417
dc.identifier.otherPID2019-107270RB-C21es_ES
dc.identifier.otherPDC2021-121172-C22es_ES
dc.identifier.otherPID2022-137269OB-C21es_ES
dc.identifier.otherPID2022-137269OB-C22es_ES
dc.identifier.urihttps://hdl.handle.net/10902/36437
dc.description.abstractThis research introduces a new method for creating synthetic Distributed Acous tic Sensing (DAS) datasets from transport microsimulation models. The process involves modeling detailed vehicle interactions, trajectories, and characteristics from the PTV VIS SIM transport microsimulation tool. It then applies the Flamant-Boussinesq approximation to simulate the resulting ground deformation detected by virtual fiber-optic cables. These synthetic DAS signals serve as large-scale, scenario-controlled, labeled datasets on train ing machine learning models for various transport applications. We demonstrate this by training several U-Net convolutional neural networks to enhance spatial resolution (reducing it to half the original gauge length), filtering traffic signals by vehicle direction, and simulating the effects of alternative cable layouts. The methodology is tested using simulations of real road scenarios, featuring a fiber-optic cable buried along the westbound shoulder with sections deviating from the roadside. The U-Net models, trained solely on synthetic data, showed promising performance (e.g., validation MSE down to 0.0015 for directional filtering) and improved the detectability of faint signals, like bicycles among heavy vehicles, when applied to real DAS measurements from the test site. This framework uniquely integrates detailed traffic modeling with DAS physics, providing a novel tool to develop and evaluate DAS signal processing techniques, optimize cable layout deploy ments, and advance DAS applications in complex transportation monitoring scenarios. Creating such a procedure offers significant potential for advancing the application of DAS in transportation monitoring and smart city initiatives.es_ES
dc.description.sponsorshipThis research was funded by the Spanish Goverment “Subprograma Ayudas Predoctorales 2020 Investigadores” program under Grant PRE2020-096336, assigned to the National Plan project PID2019-107270RB-C21, “Photonic Devices and Systems Sensors for Intelligent Structures and Non Destructive Evaluation I”; the National “Knowledge Generation Projects” project “Photonic Sensors for Smart and Sustainable Cities (Performance)” under grant ID6448137269-137269-4-22; the project “Integrated System for Traffic and Road Condition Monitoring Using Fiber-Optic Sensors (Ingestion)”, under grant PDC2021-121172-C22 funded by MICIU/AEI/10.13039/501100011033 and by the European Union Next GenerationEU/PRTR. This work was supported in part by grant PID2022-137269OB-C21 by MICIU/AEI/10.13039/501100011033 and by ERDF “A way of making Europe”; and grant PID2022-137269OB-C22 by MICIU/AEI/10.13039/501100011033 and by the European Union.es_ES
dc.format.extent23 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceApplied Sciences, 2025,15(9), 5203es_ES
dc.subject.otherDASes_ES
dc.subject.otherDistributed acoustic sensinges_ES
dc.subject.otherTransport engineeringes_ES
dc.subject.otherSynthetic DASes_ES
dc.subject.otherMicrosimulationes_ES
dc.subject.otherDAS traffic monitoringes_ES
dc.subject.otherEnhanced spatial resolutiones_ES
dc.titleMethod to use transport microsimulation models to create synthetic distributed acoustic sensing datasetses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-137269OB-C22/ES/SENSORES FOTONICOS PARA CIUDADES INTELIGENTES Y SOSTENIBLES II/es_ES
dc.identifier.DOI10.3390/app15095203
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.