dc.contributor.author | Crespo Ruiz, Luis | |
dc.contributor.author | Santos, Francisco | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2025-05-21T14:58:44Z | |
dc.date.available | 2025-05-21T14:58:44Z | |
dc.date.issued | 2025 | |
dc.identifier.issn | 0179-5376 | |
dc.identifier.issn | 1432-0444 | |
dc.identifier.other | PID2019-106188GB-I00 | es_ES |
dc.identifier.other | PID2022-137283NB-C21 ; PRE2020-092702 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10902/36412 | |
dc.description.abstract | Let dk(n) denote the simplicial complex of (k+1)-crossing-free subsets of edges in [n]2. Here k,nEN and n >=2k+1. Jonsson (2003) proved that [neglecting the short edges that cannot be part of any (k+1)-crossing], dk(n) is a shellable sphere of dimension k(n-2k-1)-1, and conjectured it to be polytopal. The same result and question arose in the work of Knutson and Miller (Adv Math 184(1):161-176, 2004) on subword complexes. Despite considerable effort, the only values of (k, n) for which the conjecture is known to hold are n<=2k+3 (Pilaud and Santos, Eur J Comb. 33(4):632?662, 2012. https://doi.org/10.1016/j.ejc.2011.12.003) and (2, 8) (Bokowski and Pilaud, On symmetric realizations of the simplicial complex of 3-crossing-free sets of diagonals of the octagon. In: Proceedings of the 21st annual Canadian conference on computational geometry, 2009). Using ideas from rigidity theory and choosing points along the moment curve we realize dk(n) as a polytope for (k,n)E{(2,9),(2,10),(3,10)}. We also realize it as a simplicial fan for all n<=13 and arbitrary k, except the pairs (3, 12) and (3, 13). Finally, we also show that for k>=3 and n>=2k+6 no choice of points can realize dk(n) via bar-and-joint rigidity with points along the moment curve or, more generally, via cofactor rigidity with arbitrary points in convex position. | es_ES |
dc.description.sponsorship | Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. Supported by Grants PID2019-106188GB-I00 and PID2022-137283NB-C21 and PRE2020-092702 funded by MCIN/AEI/10.13039/501100011033, and by Project CLaPPo (21.SI03.64658) of Universidad de Cantabria
and Banco Santander. | es_ES |
dc.format.extent | 43 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Springer New York LLC | es_ES |
dc.rights | © The Author(s) 2024 | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.source | Discrete and Computational Geometry, 2025, 73(4), 973-1015 | es_ES |
dc.subject.other | Multiassociahedron | es_ES |
dc.subject.other | Cofactor rigidity | es_ES |
dc.subject.other | Polytopality | es_ES |
dc.subject.other | Oriented matroids | es_ES |
dc.title | Realizations of multiassociahedra via rigidity | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1007/s00454-024-00698-y | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.1007/s00454-024-00698-y | |
dc.type.version | publishedVersion | es_ES |