Mostrar el registro sencillo

dc.contributor.authorCrespo Ruiz, Luis 
dc.contributor.authorSantos, Francisco 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-05-21T14:58:44Z
dc.date.available2025-05-21T14:58:44Z
dc.date.issued2025
dc.identifier.issn0179-5376
dc.identifier.issn1432-0444
dc.identifier.otherPID2019-106188GB-I00es_ES
dc.identifier.otherPID2022-137283NB-C21 ; PRE2020-092702es_ES
dc.identifier.urihttps://hdl.handle.net/10902/36412
dc.description.abstractLet dk(n) denote the simplicial complex of (k+1)-crossing-free subsets of edges in [n]2. Here k,nEN and n >=2k+1. Jonsson (2003) proved that [neglecting the short edges that cannot be part of any (k+1)-crossing], dk(n) is a shellable sphere of dimension k(n-2k-1)-1, and conjectured it to be polytopal. The same result and question arose in the work of Knutson and Miller (Adv Math 184(1):161-176, 2004) on subword complexes. Despite considerable effort, the only values of (k, n) for which the conjecture is known to hold are n<=2k+3 (Pilaud and Santos, Eur J Comb. 33(4):632?662, 2012. https://doi.org/10.1016/j.ejc.2011.12.003) and (2, 8) (Bokowski and Pilaud, On symmetric realizations of the simplicial complex of 3-crossing-free sets of diagonals of the octagon. In: Proceedings of the 21st annual Canadian conference on computational geometry, 2009). Using ideas from rigidity theory and choosing points along the moment curve we realize dk(n) as a polytope for (k,n)E{(2,9),(2,10),(3,10)}. We also realize it as a simplicial fan for all n<=13 and arbitrary k, except the pairs (3, 12) and (3, 13). Finally, we also show that for k>=3 and n>=2k+6 no choice of points can realize dk(n) via bar-and-joint rigidity with points along the moment curve or, more generally, via cofactor rigidity with arbitrary points in convex position.es_ES
dc.description.sponsorshipOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. Supported by Grants PID2019-106188GB-I00 and PID2022-137283NB-C21 and PRE2020-092702 funded by MCIN/AEI/10.13039/501100011033, and by Project CLaPPo (21.SI03.64658) of Universidad de Cantabria and Banco Santander.es_ES
dc.format.extent43 p.es_ES
dc.language.isoenges_ES
dc.publisherSpringer New York LLCes_ES
dc.rights© The Author(s) 2024es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceDiscrete and Computational Geometry, 2025, 73(4), 973-1015es_ES
dc.subject.otherMultiassociahedrones_ES
dc.subject.otherCofactor rigidityes_ES
dc.subject.otherPolytopalityes_ES
dc.subject.otherOriented matroidses_ES
dc.titleRealizations of multiassociahedra via rigidityes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1007/s00454-024-00698-yes_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1007/s00454-024-00698-y
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© The Author(s) 2024Excepto si se señala otra cosa, la licencia del ítem se describe como © The Author(s) 2024