dc.contributor.author | García García, Borja | |
dc.contributor.author | Fernández Manteca, María Gabriela | |
dc.contributor.author | Goméz Galdós, Celia | |
dc.contributor.author | Deus Álvarez, Susana | |
dc.contributor.author | Monteoliva, Agustín P. | |
dc.contributor.author | López Higuera, José Miguel | |
dc.contributor.author | Algorri Genaro, José Francisco | |
dc.contributor.author | Ocampo Sosa, Alain Antonio | |
dc.contributor.author | Rodríguez Cobo, Luis | |
dc.contributor.author | Cobo García, Adolfo | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2025-05-14T11:32:07Z | |
dc.date.available | 2025-05-14T11:32:07Z | |
dc.date.issued | 2025-02-20 | |
dc.identifier.issn | 2079-6374 | |
dc.identifier.other | TED2021-130378B-C21 | es_ES |
dc.identifier.other | PID2022-137269OB-C22 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10902/36378 | |
dc.description.abstract | Phytoplankton are essential to aquatic ecosystems but can cause harmful algal blooms (HABs) that threaten water quality, aquatic life, and human health. Developing new devices based on spectroscopic techniques offers a promising alternative for rapid and accurate monitoring of aquatic environments. However, phytoplankton undergo various physiological changes throughout their life cycle, leading to alterations in their optical properties, such as autofluorescence. In this study, we present a modification of a low-cost photobioreactor designed to implement fluorescence spectroscopy to analyze the evolution of spectral signals during phytoplankton growth cycles. This device primarily facilitates the characterization of changes in autofluorescence, providing valuable information for the development of future spectroscopic techniques for detecting and monitoring phytoplankton. Additionally, real-time testing was performed on cyanobacterial cultures, where changes in autofluorescence were observed under different conditions. This work demonstrates a cost-effective implementation of spectroscopic techniques within a photobioreactor, offering a preliminary analysis for the future development of functional field devices for monitoring aquatic ecosystems. | es_ES |
dc.description.sponsorship | This work was supported by the R+D projects INNVAL24/28 and INNVAL23/10, funded by IDIVAL; TED2021-130378B-C21, funded byMCIN/AEI/10.13039/501100011033 and European Union NextGenerationEU/PRTR; PID2022-137269OB-C22, funded byMCIN/AEI/10.13039/501100011033 and FEDER, UE.; J.F.A. acknowledges RYC2022-035279-I, funded byMCIN/AEI/10.13039/501100011033 and FSE+. | es_ES |
dc.format.extent | 21 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.rights | © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.source | Biosensors, 2025, 15(3), 128 | es_ES |
dc.subject.other | Phytoplankton | es_ES |
dc.subject.other | Cyanobacteria | es_ES |
dc.subject.other | Harmful algal blooms | es_ES |
dc.subject.other | Fluorescence | es_ES |
dc.subject.other | Photobioreactor | es_ES |
dc.subject.other | Continuous monitoring | es_ES |
dc.title | Integration of fluorescence spectroscopy into a photobioreactor for the monitoring of cyanobacteria | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-137269OB-C22/ES/SENSORES FOTONICOS PARA CIUDADES INTELIGENTES Y SOSTENIBLES II/ | es_ES |
dc.identifier.DOI | 10.3390/bios15030128 | |
dc.type.version | publishedVersion | es_ES |