A numerical algorithm for computing the zeros of parabolic cylinder functions in the complex plane
Ver/ Abrir
Registro completo
Mostrar el registro completo DCFecha
2025-06Derechos
Attribution 4.0 International
Publicado en
BIT numerical mathematics, 2025, 65(2), 20
Editorial
Springer Nature
Enlace a la publicación
Palabras clave
Parabolic cylinder functions
Complex zeros
Fixed point methods
Matlab software
Resumen/Abstract
A numerical algorithm (implemented in Matlab) for computing the zeros of the parabolic cylinder function U (a, z) in domains of the complex plane is presented. The algorithm uses accurate approximations to the first zero plus a highly efficient method based on a fourth-order fixed point method with the parabolic cylinder functions computed by Taylor series and carefully selected steps, to compute the rest of the zeros. For |a| small, the asymptotic approximations are complemented with a few fixed point iterations requiring the evaluation of U (a, z) and U' (a,z) in the region where the complex zeros are located. Liouville Green expansions are derived to enhance the performance of a computational scheme to evaluate U (a, z) and U' (a,z) in that region. Several tests show the accuracy and efficiency of the numerical algorithm.
Colecciones a las que pertenece
- D20 Artículos [468]
- D20 Proyectos de Investigación [326]
- D21 Artículos [417]
- D21 Proyectos de Investigación [326]