dc.contributor.author | Ramírez García, David | |
dc.contributor.author | Santamaría Caballero, Luis Ignacio | |
dc.contributor.author | Scharf, Louis L. | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2025-05-08T06:58:18Z | |
dc.date.available | 2025-05-08T06:58:18Z | |
dc.date.issued | 2024 | |
dc.identifier.isbn | 979-8-3503-5405-8 | |
dc.identifier.other | PID2021-123182OB-I00 | es_ES |
dc.identifier.other | PID2022-137099NB-C43 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10902/36359 | |
dc.description.abstract | Motivated by passive source localization, we derive a generalized likelihood ratio for detecting a Gaussian signal common to two passive sensor arrays, measured in white Gaussian noises of unknown variances. The resulting detector is compared with a related detector that makes no such Gaussian signal assumption. These two detectors are called, respectively, second-order and first-order detectors. In the case where each passive sensor employs a known beamformer, performance is nearly identical. But for more general channel or beamformer models where the received signal is assumed only to lie in a low-dimensional subspace, the second-order detector can outperform the first-order detector. | es_ES |
dc.description.sponsorship | The work of D. Ramirez was partially supported by MICIU/AEI/10.13039/501100011033/FEDER, UE, under grant PID2021-123182OB-I00 (EPiCENTER), by the Office of Naval Research (ONR) Global under contract N62909-23-1-2002, and by the Spanish Ministry of Economic Affairs and Digital Transformation and the European Union-NextGenerationEU through the UNICO 5G I+D SORUS project. The work of I. Santamaria was partly supported under grant PID2022-137099NBC43 (MADDIE) funded by MCIN/AEI/10.13039/501100011033. The work of L. L. Scharf was supported by the Office of Naval Research (ONR) under contract N00014-21-1-2145 and the Air Force Office of Scientific Research (AFOSR) under contract FA9550-21-1-0169. | es_ES |
dc.format.extent | 5 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | es_ES |
dc.rights | © 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | es_ES |
dc.source | Fifty-Eighth Asilomar Conference on Signals, Systems & Computers, Pacific Grove, California, 2024, 213-217 | es_ES |
dc.subject.other | Generalized likelihood ratio test (GLRT) | es_ES |
dc.subject.other | Maximum likelihood (ML) estimation | es_ES |
dc.subject.other | Minorization-maximization (MM) algorithms | es_ES |
dc.subject.other | Passive multi-channel detection | es_ES |
dc.subject.other | Passive source localization | es_ES |
dc.title | Passive detection with a multi-rank beamformer of a random signal common to two sensors | es_ES |
dc.type | info:eu-repo/semantics/conferenceObject | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1109/IEEECONF60004.2024.10942635 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123182OB-I00/ES/MODELOS PROFUNDOS Y EXPLICABLES BASADOS EN VARIABLES LATENTES PARA SALUD MENTAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-137099NB-C43/ES/TECNOLOGIAS DE COMUNICACION, CODIFICACION Y PROCESADO PARA REDES CLASICAS-CUANTICAS DE PROXIMA GENERACION/ | es_ES |
dc.identifier.DOI | 10.1109/IEEECONF60004.2024.10942635 | |
dc.type.version | acceptedVersion | es_ES |