Mostrar el registro sencillo

dc.contributor.authorRamírez García, David
dc.contributor.authorMíguez, Joaquín
dc.contributor.authorSantamaría Caballero, Luis Ignacio 
dc.contributor.authorScharf, Louis L. 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-05-07T07:45:13Z
dc.date.available2025-05-07T07:45:13Z
dc.date.issued2024
dc.identifier.isbn979-8-3503-5405-8
dc.identifier.isbn979-8-3503-5406-5
dc.identifier.otherPID2021-123182OB-I00es_ES
dc.identifier.otherPID2022-137099NBC43es_ES
dc.identifier.otherPID2021-125159NB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/36353
dc.description.abstractThis paper considers the passive detection of a signal common to two multi-sensor arrays. We consider Gaussian received signals and noises with positive-definite, but otherwise unstructured covariance matrices. Under the null hypothesis, the composite covariance matrix for the two arrays is block-diagonal with arbitrary positive definite (PD) blocks, whereas under the alternative, it is modeled as an unstructured covariance matrix. Assuming complex inverse-Wishart priors for the unknown covariance matrices, the proposed test relies on the marginalized likelihood ratio, where the unknown parameters (i.e., the covariance matrices) are integrated out. A proper choice of hyper-parameters of the prior distribution shows that the Bayesian-inspired test reduces to a regularized canonical correlation analysis (CCA) detector. Simulation results show the superior performance of the proposed method compared to the generalized likelihood ratio test (GLRT), which is given by a function of the canonical correlations.es_ES
dc.description.sponsorshipThe work of D. Ramírez was partially supported by MICIU/AEI/10.13039/501100011033/FEDER, UE, under grant PID2021-123182OB-I00 (EPiCENTER), by the Office of Naval Research (ONR) Global under contract N62909-23-1-2002, and by the Spanish Ministry of Economic Affairs and Digital Transformation and the European Union- NextGenerationEU through the UNICO 5G I+D SORUS project. The work of I. Santamaria was partly supported under grant PID2022-137099NBC43 (MADDIE) funded by MCIN/AEI/10.13039/501100011033/FEDER, UE. The work of L. L. Scharf was supported by the Office of Naval Research (ONR) under contract N00014-21-1-2145 and the Air Force Office of Scientific Research (AFOSR) under contract FA9550-21-1-0169. J. Míguez acknowledges the support of MICIU/AEI/10.13039/501100011033/FEDER, UE, under grant PID2021-125159NB-I00 (TYCHE) and the Office of Naval Research under contract N00014-22-1-2647.es_ES
dc.format.extent5 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers, Inc.es_ES
dc.rights© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.es_ES
dc.sourceFifty-Eighth Asilomar Conference on Signals, Systems & Computers, Pacific Grove, California, USA, 2024, 1486-1490es_ES
dc.subject.otherCoherencees_ES
dc.subject.otherComplex inverse-Wishart distributiones_ES
dc.subject.otherMarginal likelihood ratioes_ES
dc.subject.otherMulti-sensor arrayes_ES
dc.subject.otherPassive radares_ES
dc.titleA Bayesian-inspired approach to passive radar detectiones_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/IEEECONF60004.2024.10943007es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123182OB-I00/ES/MODELOS PROFUNDOS Y EXPLICABLES BASADOS EN VARIABLES LATENTES PARA SALUD MENTAL/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-137099NB-C43/ES/TECNOLOGIAS DE COMUNICACION, CODIFICACION Y PROCESADO PARA REDES CLASICAS-CUANTICAS DE PROXIMA GENERACION/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-125159NB-I00/ES/CUANTIFICACION DE INCERTIDUMBRE EN MODELOS FISICOS ESTOCASTICOS: FILTROS PROFUNDOS Y METODOS DE MONTE CARLO ESPACIO-TEMPORALES/es_ES
dc.identifier.DOIDOI: 10.1109/IEEECONF60004.2024.10943007
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo