• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Bayesian-inspired approach to passive radar detection

    Ver/Abrir
    Bayesian-inspiredApp ... (302.8Kb)
    Identificadores
    URI: https://hdl.handle.net/10902/36353
    DOI: DOI: 10.1109/IEEECONF60004.2024.10943007
    ISBN: 979-8-3503-5405-8
    ISBN: 979-8-3503-5406-5
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Ramírez García, David; Míguez, Joaquín; Santamaría Caballero, Luis IgnacioAutoridad Unican; Scharf, Louis L.Autoridad Unican
    Fecha
    2024
    Derechos
    © 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Publicado en
    Fifty-Eighth Asilomar Conference on Signals, Systems & Computers, Pacific Grove, California, USA, 2024, 1486-1490
    Editorial
    Institute of Electrical and Electronics Engineers, Inc.
    Enlace a la publicación
    https://doi.org/10.1109/IEEECONF60004.2024.10943007
    Palabras clave
    Coherence
    Complex inverse-Wishart distribution
    Marginal likelihood ratio
    Multi-sensor array
    Passive radar
    Resumen/Abstract
    This paper considers the passive detection of a signal common to two multi-sensor arrays. We consider Gaussian received signals and noises with positive-definite, but otherwise unstructured covariance matrices. Under the null hypothesis, the composite covariance matrix for the two arrays is block-diagonal with arbitrary positive definite (PD) blocks, whereas under the alternative, it is modeled as an unstructured covariance matrix. Assuming complex inverse-Wishart priors for the unknown covariance matrices, the proposed test relies on the marginalized likelihood ratio, where the unknown parameters (i.e., the covariance matrices) are integrated out. A proper choice of hyper-parameters of the prior distribution shows that the Bayesian-inspired test reduces to a regularized canonical correlation analysis (CCA) detector. Simulation results show the superior performance of the proposed method compared to the generalized likelihood ratio test (GLRT), which is given by a function of the canonical correlations.
    Colecciones a las que pertenece
    • D12 Congresos [593]
    • D12 Proyectos de Investigación [517]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España