Mostrar el registro sencillo

dc.contributor.authorSuárez Plata, Daniel Nicolás 
dc.contributor.authorFernández Solórzano, Víctor Manuel 
dc.contributor.authorPosadas Cobo, Héctor 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-05-05T07:13:00Z
dc.date.available2025-05-05T07:13:00Z
dc.date.issued2024
dc.identifier.isbn979-8-3503-8038-5
dc.identifier.otherPID2020-116417RB-C43es_ES
dc.identifier.urihttps://hdl.handle.net/10902/36330
dc.description.abstractThe growing use of AI -driven video applications like surveillance or healthcare monitoring underscores the need for embedded solutions capable of accurately categorizing human actions in real-time videos. A methodology is proposed for implementing a customized CNN-LSTM architecture on AMD-Xilinx SoC FPGA devices for human action categorization from video data. In this approach, CNN operations are accelerated by the Vitis-AI DPU within the FPG A, offering flexibility to support a range of CNN architectures without requiring individual hardware description language development. This adaptability is crucial given the varying performance of CNN models across datasets. LSTM operations are executed on the SoC processors, overcoming limitations in the support provided by DPU IP cores for such networks, while maintaining flexibility to assess different configurations. Additionally, a pipeline strategy is proposed to enable parallel execution of both CNN and LSTM components, optimizing resource utilization and minimizing idle times. To demonstrate the validity of the proposed implementation methodology, experiments were conducted on the ZCUI02 de-velopment board, equipped with a Zynq Ultrascale+ MP-SoC, and involved the use of the VGG 16 CNN model along with the exploration of different LSTM configurations. The results demonstrate remarkable computational performance, achieving frame rates of up to 44.34 FPS for videos recorded at a resolution of 320×240 pixels, surpassing real-time requirements. Aditionally, the proposed implementation maintains high accuracy levels, exemplified by the single bidirectional LSTM layer achieving a competitive accuracy of 73.33% based on the UCF10l dataset.es_ES
dc.description.sponsorshipThis work has been supported by Project PID2020-116417RB-C43, funded by Spanish MCIN/AEI/10.13039/501100011033 and by Project No 101007273 ECSEL DAIS, funded by EU H2020 and by Spanish pci2021-121988.es_ES
dc.format.extent8 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers Inc.es_ES
dc.rights© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.es_ES
dc.source27th Euromicro Conference on Digital System Design (DSD), París, 2024, 202-209es_ES
dc.subject.otherAMD-xilinxes_ES
dc.subject.otherCNN-LSTMes_ES
dc.subject.otherDeep learninges_ES
dc.subject.otherHARes_ES
dc.subject.otherSoC FPGAes_ES
dc.subject.otherUCFI0les_ES
dc.subject.otherVitis-AI DPUes_ES
dc.subject.otherZCUI02es_ES
dc.subject.otherZynq ultrascale+MPSoCes_ES
dc.titleCNN-LSTM implementation methodology on SoC FPGA for human action recognition based on videoes_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/DSD64264.2024.00035es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/101007273/EU/Distributed Artificial Intelligent Systems/DAIS/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116417RB-C43/ES/TECNOLOGIAS PARA INTELIGENCIA ARTIFICIAL RECONFIGURABLE APLICADAS A LA E-SALUD Y LA GANADERIA/es_ES
dc.identifier.DOI10.1109/DSD64264.2024.00035
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo