• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Tecnología Electrónica e Ing. Sistemas y Automática (TEISA)
    • D50 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Tecnología Electrónica e Ing. Sistemas y Automática (TEISA)
    • D50 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    CNN-LSTM implementation methodology on SoC FPGA for human action recognition based on video

    Ver/Abrir
    CNNLSTMImplementatio ... (504.5Kb)
    Identificadores
    URI: https://hdl.handle.net/10902/36330
    DOI: 10.1109/DSD64264.2024.00035
    ISBN: 979-8-3503-8038-5
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Suárez Plata, Daniel NicolásAutoridad Unican; Fernández Solórzano, Víctor ManuelAutoridad Unican; Posadas Cobo, HéctorAutoridad Unican
    Fecha
    2024
    Derechos
    © 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Publicado en
    27th Euromicro Conference on Digital System Design (DSD), París, 2024, 202-209
    Editorial
    Institute of Electrical and Electronics Engineers Inc.
    Enlace a la publicación
    https://doi.org/10.1109/DSD64264.2024.00035
    Palabras clave
    AMD-xilinx
    CNN-LSTM
    Deep learning
    HAR
    SoC FPGA
    UCFI0l
    Vitis-AI DPU
    ZCUI02
    Zynq ultrascale+MPSoC
    Resumen/Abstract
    The growing use of AI -driven video applications like surveillance or healthcare monitoring underscores the need for embedded solutions capable of accurately categorizing human actions in real-time videos. A methodology is proposed for implementing a customized CNN-LSTM architecture on AMD-Xilinx SoC FPGA devices for human action categorization from video data. In this approach, CNN operations are accelerated by the Vitis-AI DPU within the FPG A, offering flexibility to support a range of CNN architectures without requiring individual hardware description language development. This adaptability is crucial given the varying performance of CNN models across datasets. LSTM operations are executed on the SoC processors, overcoming limitations in the support provided by DPU IP cores for such networks, while maintaining flexibility to assess different configurations. Additionally, a pipeline strategy is proposed to enable parallel execution of both CNN and LSTM components, optimizing resource utilization and minimizing idle times. To demonstrate the validity of the proposed implementation methodology, experiments were conducted on the ZCUI02 de-velopment board, equipped with a Zynq Ultrascale+ MP-SoC, and involved the use of the VGG 16 CNN model along with the exploration of different LSTM configurations. The results demonstrate remarkable computational performance, achieving frame rates of up to 44.34 FPS for videos recorded at a resolution of 320×240 pixels, surpassing real-time requirements. Aditionally, the proposed implementation maintains high accuracy levels, exemplified by the single bidirectional LSTM layer achieving a competitive accuracy of 73.33% based on the UCF10l dataset.
    Colecciones a las que pertenece
    • D50 Congresos [464]
    • D50 Proyectos de Investigación [404]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España