dc.contributor.author | Gálvez Tomida, Akemi | |
dc.contributor.author | Pérez Carabaza, Sara | |
dc.contributor.author | Iglesias Prieto, Andrés | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2025-04-29T15:00:30Z | |
dc.date.available | 2025-04-29T15:00:30Z | |
dc.date.issued | 2024 | |
dc.identifier.isbn | 979-8-3503-7696-8 | |
dc.identifier.isbn | 979-8-3503-7697-5 | |
dc.identifier.other | PID2021-127073OB-I00 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10902/36302 | |
dc.description.abstract | Reconstructing the attractors of unknown chaotic systems from time series data presents a formidable challenge with broad applications across various disciplines. In this paper, we propose a swarm intelligence approach to address this challenge, focusing specifically on low-dimensional chaotic maps. Our approach is based on the bat algorithm, a renowned bio-inspired optimization technique well-suited for continuous optimization tasks. We evaluate the effectiveness and validity of our proposed approach by applying it to two distinct examples of chaotic maps: the Burger map and the Duffing map. Through comprehensive experimentation, we showcase the satisfactory performance of our method in reconstructing attractors from time series data. Based on our empirical findings, we conclude that our approach holds significant promise for the reconstruction of attractors of low-dimensional chaotic maps using time series data. | es_ES |
dc.description.sponsorship | Research work funded by Project PDE-GIR (No. 778035) of the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Actions, and project PID2021-127073OB-I00 of the MCIN/AEI/10.13039/501100011033/FEDER,EU, Spanish Ministry of Science and Innovation. | es_ES |
dc.format.extent | 6 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers, Inc. | es_ES |
dc.rights | © 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | es_ES |
dc.source | IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC), Osaka, Japan, 2024, 1642-1647 | es_ES |
dc.subject.other | Dynamical systems | es_ES |
dc.subject.other | Chaotic maps | es_ES |
dc.subject.other | Attractor reconstruction | es_ES |
dc.subject.other | Time series | es_ES |
dc.subject.other | Swarm intelligence | es_ES |
dc.subject.other | Bat algorithm | es_ES |
dc.title | Bat algorithm for attractor reconstruction of low-dimensional chaotic maps from time series | es_ES |
dc.type | info:eu-repo/semantics/conferenceObject | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1109/COMPSAC61105.2024.00258 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/778035/EU/PDE-based geometric modelling, image processing, and shape reconstruction/PDE-GIR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-127073OB-I00/ES/INTELIGENCIA ARTIFICIAL Y EVOLUTIVA PARA GRAFICOS Y ANIMACION POR COMPUTADOR, PROCESAMIENTO DE IMAGENES, MEDICINA Y ROBOTICA/ | es_ES |
dc.identifier.DOI | 10.1109/COMPSAC61105.2024.00258 | |
dc.type.version | acceptedVersion | es_ES |