Mostrar el registro sencillo

dc.contributor.authorGálvez Tomida, Akemi 
dc.contributor.authorPérez Carabaza, Sara 
dc.contributor.authorIglesias Prieto, Andrés 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-04-29T15:00:30Z
dc.date.available2025-04-29T15:00:30Z
dc.date.issued2024
dc.identifier.isbn979-8-3503-7696-8
dc.identifier.isbn979-8-3503-7697-5
dc.identifier.otherPID2021-127073OB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/36302
dc.description.abstractReconstructing the attractors of unknown chaotic systems from time series data presents a formidable challenge with broad applications across various disciplines. In this paper, we propose a swarm intelligence approach to address this challenge, focusing specifically on low-dimensional chaotic maps. Our approach is based on the bat algorithm, a renowned bio-inspired optimization technique well-suited for continuous optimization tasks. We evaluate the effectiveness and validity of our proposed approach by applying it to two distinct examples of chaotic maps: the Burger map and the Duffing map. Through comprehensive experimentation, we showcase the satisfactory performance of our method in reconstructing attractors from time series data. Based on our empirical findings, we conclude that our approach holds significant promise for the reconstruction of attractors of low-dimensional chaotic maps using time series data.es_ES
dc.description.sponsorshipResearch work funded by Project PDE-GIR (No. 778035) of the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Actions, and project PID2021-127073OB-I00 of the MCIN/AEI/10.13039/501100011033/FEDER,EU, Spanish Ministry of Science and Innovation.es_ES
dc.format.extent6 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers, Inc.es_ES
dc.rights© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.es_ES
dc.sourceIEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC), Osaka, Japan, 2024, 1642-1647es_ES
dc.subject.otherDynamical systemses_ES
dc.subject.otherChaotic mapses_ES
dc.subject.otherAttractor reconstructiones_ES
dc.subject.otherTime serieses_ES
dc.subject.otherSwarm intelligencees_ES
dc.subject.otherBat algorithmes_ES
dc.titleBat algorithm for attractor reconstruction of low-dimensional chaotic maps from time serieses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/COMPSAC61105.2024.00258es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/778035/EU/PDE-based geometric modelling, image processing, and shape reconstruction/PDE-GIR/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-127073OB-I00/ES/INTELIGENCIA ARTIFICIAL Y EVOLUTIVA PARA GRAFICOS Y ANIMACION POR COMPUTADOR, PROCESAMIENTO DE IMAGENES, MEDICINA Y ROBOTICA/es_ES
dc.identifier.DOI10.1109/COMPSAC61105.2024.00258
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo