Mostrar el registro sencillo

dc.contributor.authorCasabán Bartual, María Consuelo
dc.contributor.authorCompany Rossi, Rafael
dc.contributor.authorEgorova, Vera 
dc.contributor.authorJódar Sánchez, Lucas
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-04-25T11:18:47Z
dc.date.issued2024-07
dc.identifier.issn0378-4754
dc.identifier.issn1872-7166
dc.identifier.otherPID2019-107685RB-I00es_ES
dc.identifier.otherPDC2022-133115-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/36293
dc.description.abstractA free boundary diffusive logistic model finds application in many different fields from biological invasion to wildfire propagation. However, many of these processes show a random nature and contain uncertainties in the parameters. In this paper we extend the diffusive logistic model with unknown moving front to the random scenario by assuming that the involved parameters have a finite degree of randomness. The resulting mathematical model becomes a random free boundary partial differential problem and it is addressed numerically combining the finite difference method with two approaches for the treatment of the moving front. Firstly, we propose a front-fixing transformation, reshaping the original random free boundary domain into a fixed deterministic one. A second approach is using the front-tracking method to capture the evolution of the moving front adapted to the random framework. Statistical moments of the approximating solution stochastic process and the stochastic moving boundary solution are calculated by the Monte Carlo technique. Qualitative numerical analysis establishes the stability and positivity conditions. Numerical examples are provided to compare both approaches, study the spreading-vanishing dichotomy, prove qualitative properties of the schemes and show the numerical convergence.es_ES
dc.description.sponsorshipThis work has been partially supported by the Spanish Ministry of Economy and Competitiveness MINECO through the project PID2019-107685RB-I00 and by the Spanish State Research Agency (AEI) through the project PDC2022-133115-I00.es_ES
dc.format.extent24 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceMathematics and Computers in Simulation, 2024, 221, 55-78es_ES
dc.subject.otherRandom stefan problemes_ES
dc.subject.otherMean square calculuses_ES
dc.subject.otherFront-fixinges_ES
dc.subject.otherFront-trackinges_ES
dc.subject.otherDiffusive logistic modeles_ES
dc.subject.otherSpreading-vanishing dichotomyes_ES
dc.subject.otherNumerical analysises_ES
dc.titleA random free-boundary diffusive logistic differential model: numerical analysis, computing and simulationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.matcom.2024.02.016es_ES
dc.rights.accessRightsembargoedAccesses_ES
dc.identifier.DOI10.1016/j.matcom.2024.02.016
dc.type.versionacceptedVersiones_ES
dc.embargo.lift2026-08-01
dc.date.embargoEndDate2026-08-01


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 license