Mostrar el registro sencillo

dc.contributor.authorSierra Menéndez, Sergio 
dc.contributor.authorRamo Sánchez, Rubén
dc.contributor.authorPadilla, Marc
dc.contributor.authorCobo García, Adolfo 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-04-09T08:34:39Z
dc.date.available2025-04-09T08:34:39Z
dc.date.issued2025-03-18
dc.identifier.issn1573-2959
dc.identifier.issn0167-6369
dc.identifier.otherPID2022-137269OB-C22les_ES
dc.identifier.urihttps://hdl.handle.net/10902/36235
dc.description.abstractThis study presents an innovative approach to high-resolution land cover classification using deep learning, tackling the challenge of working with an exceptionally small dataset. Manual annotation of land cover data is both time-consuming and labor-intensive, making data augmentation crucial for enhancing model performance. While data augmentation is a well-established technique, there has not been a comprehensive and comparative evaluation of a wide range of data augmentation methods specifically applied to land cover classification until now. Our work fills this gap by systematically testing eight different data augmentation techniques across four neural networks (U-Net, DeepLabv3?+, FCN, PSPNet) using 25 cm resolution images from Cantabria, Spain. In total, we generated 19 distinct training sets and trained and validated 72 models. The results show that data augmentation can boost model performance by up to 30%. The best model (DeepLabV3?+?with flip, contrast, and brightness adjustments) achieved an accuracy of 0.89 and an IoU of 0.78. Additionally, we utilized this optimized model to generate land cover maps for the years 2014, 2017, and 2019, validated at 580 samples selected based on a stratified sampling approach using CORINE Land Cover data, achieving an accuracy of 87.2%. This study not only provides a systematic ranking of data augmentation techniques for land cover classification but also offers a practical framework to help future researchers save time by identifying the most effective augmentation strategies for this specific task.es_ES
dc.description.sponsorshipOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This research was supported by the industrial doctorate grant DIN2021-011907 funded by MICIU/AEI/https://doi.org/10.13039/501100011033 and DI37 funded by Universidad de Cantabria and project “Photonic Sensors for Sustainable Smart Cities PERFORMANCE” PID2022-137269OB-C22l (MICIU/AEI/https://doi.org/10.13039/501100011033 and ERDF/EU).es_ES
dc.format.extent24 p.es_ES
dc.language.isoenges_ES
dc.publisherSpringer Netherlandses_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceEnvironmental Monitoring and Assessment, 2025, 197, 423es_ES
dc.subject.otherLand cover classificationes_ES
dc.subject.otherData augmentationes_ES
dc.subject.otherDeep learninges_ES
dc.subject.otherImage segmentationes_ES
dc.titleOptimizing deep neural networks for high-resolution land cover classification through data augmentationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1007/s10661-025-13870-5es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-137269OB-C22/ES/SENSORES FOTONICOS PARA CIUDADES INTELIGENTES Y SOSTENIBLES II/es_ES
dc.identifier.DOI10.1007/s10661-025-13870-5
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International