Mostrar el registro sencillo

dc.contributor.authorFernández Manteca, María Gabriela
dc.contributor.authorGarcía García, Borja
dc.contributor.authorDeus Álvarez, Susana
dc.contributor.authorGoméz Galdós, Celia
dc.contributor.authorPérez Asensio, Andrea 
dc.contributor.authorAlgorri Genaro, José Francisco 
dc.contributor.authorMonteoliva Herreras, Agustín
dc.contributor.authorLópez Higuera, José Miguel 
dc.contributor.authorRodríguez Cobo, Luis 
dc.contributor.authorOcampo Sosa, Alain Antonio
dc.contributor.authorCobo García, Adolfo 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-04-08T09:21:56Z
dc.date.issued2025-09-01
dc.identifier.issn0039-9140
dc.identifier.issn1873-3573
dc.identifier.otherTED2021-130378B-C21es_ES
dc.identifier.otherPID2022-137269OB-C22es_ES
dc.identifier.urihttps://hdl.handle.net/10902/36217
dc.description.abstractCyanobacterial blooms pose significant environmental and public health risks due to the production of toxins that contaminate water sources and disrupt aquatic ecosystems. Rapid and accurate identification of cyanobacterial species is crucial for effective monitoring and management strategies. In this study, we combined Raman spectroscopy with deep learning techniques to classify four toxic cyanobacterial species: Dolichospermum crassum, Aphanizomenon sp., Planktothrix agardhii and Microcystis aeruginosa. Spectral data were acquired using a confocal Raman microscope with a 532 nm excitation wavelength and subjected to preprocessing and filtering to enhance signal quality. We evaluated a multichannel one-dimensional convolutional neural network (1D-CNN) approach that incorporates raw spectra, baseline estimations, and preprocessed spectra. This multichannel approach improved overall classification accuracy, achieving 86% compared to 74% with a traditional single-channel 1D-CNN using only preprocessed spectra while maintaining low overfitting. Shapley Additive exPlanations (SHAP) were applied to identify critical spectral regions for classification to enhance interpretability. These findings highlight the potential of combining Raman spectroscopy with explainable deep learning methods as a powerful tool for water quality monitoring and the early detection of Harmful Algal Blooms (HABs).es_ES
dc.description.sponsorshipThis work was supported by the R+D projects PREVAL23/05, INNVAL23/10, and INNVAL24/28, funded by Instituto de Investigación Marqués de Valdecilla (IDIVAL) ; J.F.A. acknowledges RYC2022-035279-I, funded by MCIN/AEI/10.13039/501100011033 and FSE+; TED2021-130378B-C21, funded by MCIN/AEI/10.13039/501100011033 and European Union NextGenerationEU/PRTR; PID2022-137269OB-C22, fun ded by MCIN/AEI/10.13039/501100011033 and FEDER, UE; Plan Nacional de I+D+i and Instituto de Salud Carlos III (ISCIII), Subdirección General de Redes Centros de Investigación Cooperativa, Ministerio de Ciencia, Innovación Universidades, through CIBER-BBN (CB16/01/00430) and CIBERINFEC (CB21/13/00068), co-financed by the European Regional Development Fund “A way to achieve Europe”. We thank the Biology Department of Universidad Autónoma de Madrid for their support and for providing the samples used in this study.es_ES
dc.format.extent23 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2025. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceTalanta, 2025, 292, 127845es_ES
dc.subject.otherCyanobacteria detectiones_ES
dc.subject.otherRaman spectroscopyes_ES
dc.subject.otherOne-dimensional convolutional neural networkses_ES
dc.subject.otherHarmful algal bloomses_ES
dc.subject.otherWater quality monitoringes_ES
dc.subject.otherShapley additive explanationses_ES
dc.titleComprehensive Raman spectroscopy analysis for differentiating toxic cyanobacteria through multichannel 1D-CNNs and SHAP-based explainabilityes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.talanta.2025.127845es_ES
dc.rights.accessRightsembargoedAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-137269OB-C22/ES/SENSORES FOTONICOS PARA CIUDADES INTELIGENTES Y SOSTENIBLES II/es_ES
dc.identifier.DOI10.1016/j.talanta.2025.127845
dc.type.versionacceptedVersiones_ES
dc.embargo.lift2027-09-01
dc.date.embargoEndDate2027-09-01


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2025. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2025. This manuscript version is made available under the CC-BY-NC-ND 4.0 license