Mostrar el registro sencillo

dc.contributor.authorBrown, Lee E.
dc.contributor.authorTaylor, Maavara
dc.contributor.authorZhang, Jiangwei
dc.contributor.authorChen, Xiaohui
dc.contributor.authorKlaar, Megan
dc.contributor.authorMoshe, Felicia Orah
dc.contributor.authorBen-Zur, Elad
dc.contributor.authorStein, Shaked
dc.contributor.authorGrayson, Richard
dc.contributor.authorCarter, Laura
dc.contributor.authorLevintal, Elad
dc.contributor.authorGal, Gideon
dc.contributor.authorZiv, Pazit
dc.contributor.authorTarkowski, Frank
dc.contributor.authorPathak, Devanshi
dc.contributor.authorKhamis, Kieran
dc.contributor.authorBarquín Ortiz, José 
dc.contributor.authorPhilamore, Hemma
dc.contributor.authorGradilla-Hernández, Misael Sebastián
dc.contributor.authorArnon, Shai
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-04-07T10:30:35Z
dc.date.available2025-04-07T10:30:35Z
dc.date.issued2025
dc.identifier.issn1547-6537
dc.identifier.issn1064-3389
dc.identifier.urihttps://hdl.handle.net/10902/36206
dc.description.abstractEstimates of greenhouse gas emissions from river networks remain highly uncertain in many parts of the world, leading to gaps in global inventories and preventing effective management. In-situ sensor technology advances, coupled with mobile sensors on robotic sensor-deployment platforms, will allow more effective data acquisition to monitor carbon cycle processes influencing river CO2 and CH4 emissions. However, if countries are to respond effectively to global climate change threats, sensors must be installed more strategically to ensure that they can be used to directly evaluate a range of management responses across river networks. We evaluate how sensors and analytical advances can be integrated into networks that are adaptable to monitor a range of catchment processes and human modifications. The most promising data analytics that provide processing, modeling, and visualizing approaches for high-resolution river system data are assessed, illustrating how multi-sensor data coupled with machine learning solutions can improve both proactive (e.g. forecasting) and reactive (e.g. alerts) strategies to better manage river catchment carbon emissions. Data measurement and integration can be used to advance assessments and management of river carbon dynamics and water quality.es_ES
dc.description.sponsorshipThis work was supported primarily by funding from the Wohl Clean Growth Alliance and the British Council. Initial ideas were generated through work undertaken as part of the Euro-FLOW project by LEB, MJK, DP, PZ and JB, funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 765553. TM is supported by a UK Natural Environment Research Council Independent Research Fellowship (NE/V014277/1). LC is supported by a UKRI Future Leaders Fellowship (MR/S032126/1). EBZ is supported by a grant from the Israeli Ministry of Science and Technology (#4755).es_ES
dc.format.extent24 p.es_ES
dc.language.isoenges_ES
dc.publisherTaylor & Francises_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceCritical Reviews in Environmental Science and Technology, 2025, 55(9), 600-623es_ES
dc.subject.otherCarbon dioxidees_ES
dc.subject.otherMachine learninges_ES
dc.subject.otherMethanees_ES
dc.subject.otherMetabolismes_ES
dc.subject.otherSensorses_ES
dc.subject.otherWater qualityes_ES
dc.titleIntegrating sensor data and machine learning to advance the science and management of river carbon emissionses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/765553/EU/A EUROpean training and research network for environmental FLOW management in river basins/EUROFLOW/es_ES
dc.identifier.DOI10.1080/10643389.2024.2429912
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International