Mostrar el registro sencillo

dc.contributor.authorRodríguez Fernández, Enrique 
dc.contributor.authorSantalla Arribas, Silvia Noemí
dc.contributor.authorCastro Ponce, Mario
dc.contributor.authorCuerno Rejado, Rodolfo
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-03-27T10:23:01Z
dc.date.issued2025-01
dc.identifier.issn1742-5468
dc.identifier.otherENE2009-12213-C03-03es_ES
dc.identifier.otherENE2012-33219es_ES
dc.identifier.otherENE2015-68265es_ES
dc.identifier.otherPGC2018-094763-B-I00es_ES
dc.identifier.otherPID2022-140217NB-I00es_ES
dc.identifier.otherPID2021-123969NB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/36101
dc.description.abstractUntil very recently, the asymptotic occurrence of intrinsic anomalous scaling has been expected to require concomitant effects for kinetically rough interfaces, like quenched disorder or morphological instabilities. However, counterexamples have been recently reported for simpler situations dominated by time-dependent noise, as in the discrete growth system associated with an Ising model proposed by Dashti-Naserabadi et al (2019 Phys. Rev. E 100, 060101(R)), who assessed the equilibrium behaviour of the model. Here, we revisit this system to characterise its time-dependent behaviour in two and three dimensions (oneand two-dimensional interfaces, respectively). While the 3D case seems dominated by a fast evolution beyond critical dynamics, in the 2D case, numerical simulations of an associated time-dependent Ginzburg-Landau equation retrieve the same static (roughness) exponents and the same intrinsic anomalous scaling ansatz as in the equilibrium case throughout the complete time evolution. However, the dynamic exponent is seen to cross over between two different values, none of which enables identification with previously known universality classes of kinetic roughening. Moreover, simulations for larger system sizes suggest a breakdown of scaling behaviour at the largest scales, suggesting that the previously reported scaling behaviour may be effective and restricted to relatively small systems.es_ES
dc.description.sponsorshipWe thank J M L´opez for the discussions and suggestions. Part of our numerical simulations were done in Uranus, a supercomputer cluster located at Universidad Carlos III de Madrid and funded jointly by EU-FEDER and the Spanish Government via Grants Nos. UNC313-4×10−2361, ENE2009-12213-C03-03, ENE2012-33219, and ENE2015-68265, and via Grant No. SIMTURB-CM-UC3M from the Convenio Plurianual of Comunidad de Madrid (CAM, Spain). In addition, this work has been partially supported by Ministerio de Ciencia e Innovación (Spain), by Agencia Estatal de Investigación (AEI, Spain, 10.13039/501100011033), and by European Regional Development Fund (ERDF, A way f making Europe) through Grants Nos. PGC2018-094763-B-I00, PID2022-140217NBI00, and PID2021-123969NB-I00, and by CAM (Spain) under the Multiannual Agreements with UC3M in the line of Excellence of University Professors (EPUC3M14 and EPUC3M23), in the context of the V Plan Regional de Investigación Científica e Innovación Tecnológica (PRICIT). E. R.-F. acknowledges financial support from CAM through contract No. 2022/018 under the EPUC3M23 line and from Universidad Carlos III de Madrid through the Margarita Salas program. He also acknowledges hospitality at Departamento de Matemáticas (Universidad Carlos III de Madrid) and Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), where this work has been carried out.es_ES
dc.format.extent14 p.es_ES
dc.language.isoenges_ES
dc.publisherIOP Publishinges_ES
dc.rights© 2025 IOP -- This is the Accepted Manuscript version of an article accepted for publication in Journal of Statistical Mechanics: Theory and Experiment. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/1742-5468/ada5edes_ES
dc.sourceJournal of Statistical Mechanics: Theory and Experiment, 2025, 1, 013215es_ES
dc.subject.otherKinetic growth processeses_ES
dc.subject.otherKinetic rougheninges_ES
dc.subject.otherNumerical simulationses_ES
dc.subject.otherSelf-affine roughnesses_ES
dc.titleAnomalous dynamic scaling of Ising interfaceses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1088/1742-5468/ada5edes_ES
dc.rights.accessRightsembargoedAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//ENE2009-12213-C03-03/ES/Mecanismos Fisicos Implicados En El Transporte Y En Las Transiciones De Confinamiento En Plasmas/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//ENE2015-68265-P/ES/ESTUDIO DEL IMPACTO DE PERTURBACIONES MAGNETICAS TRIDIMENSIONALES EN LAS PROPIEDADES DE ESTABILIDAD Y EL TRANSPORTE DE TOKAMAKS Y STELLARATORS/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094763-B-I00/ES/SIMETRIA Y GEOMETRIA EN LAS FLUCTUACIONES DE SISTEMAS ESPACIALMENTE EXTENSOS LEJOS DEL EQUILIBRIO/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-140217NB-I00/ES/MODELADO PROBABILISTICO DE SISTEMAS COMPLEJOS CON INCERTIDUMBRE: DE LAS MOLECULAS A LAS INTERACCIONES HUMANAS/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123969NB-I00/ES/EMERGENCIA DE INVARIANCIA DE ESCALA GENERICA EN SISTEMAS COMPLEJOS DINAMICOS/es_ES
dc.identifier.DOI10.1088/1742-5468/ada5ed
dc.type.versionacceptedVersiones_ES
dc.embargo.lift2026-01-01
dc.date.embargoEndDate2026-01-01


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo