• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Anomalous dynamic scaling of Ising interfaces

    Ver/Abrir
    AnomalousDynamicScal ... (7.132Mb)
    Identificadores
    URI: https://hdl.handle.net/10902/36101
    DOI: 10.1088/1742-5468/ada5ed
    ISSN: 1742-5468
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Rodríguez Fernández, EnriqueAutoridad Unican; Santalla Arribas, Silvia Noemí; Castro Ponce, Mario; Cuerno Rejado, Rodolfo
    Fecha
    2025-01
    Derechos
    © 2025 IOP -- This is the Accepted Manuscript version of an article accepted for publication in Journal of Statistical Mechanics: Theory and Experiment. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/1742-5468/ada5ed
    Publicado en
    Journal of Statistical Mechanics: Theory and Experiment, 2025, 1, 013215
    Editorial
    IOP Publishing
    Disponible después de
    2026-01-01
    Enlace a la publicación
    https://doi.org/10.1088/1742-5468/ada5ed
    Palabras clave
    Kinetic growth processes
    Kinetic roughening
    Numerical simulations
    Self-affine roughness
    Resumen/Abstract
    Until very recently, the asymptotic occurrence of intrinsic anomalous scaling has been expected to require concomitant effects for kinetically rough interfaces, like quenched disorder or morphological instabilities. However, counterexamples have been recently reported for simpler situations dominated by time-dependent noise, as in the discrete growth system associated with an Ising model proposed by Dashti-Naserabadi et al (2019 Phys. Rev. E 100, 060101(R)), who assessed the equilibrium behaviour of the model. Here, we revisit this system to characterise its time-dependent behaviour in two and three dimensions (oneand two-dimensional interfaces, respectively). While the 3D case seems dominated by a fast evolution beyond critical dynamics, in the 2D case, numerical simulations of an associated time-dependent Ginzburg-Landau equation retrieve the same static (roughness) exponents and the same intrinsic anomalous scaling ansatz as in the equilibrium case throughout the complete time evolution. However, the dynamic exponent is seen to cross over between two different values, none of which enables identification with previously known universality classes of kinetic roughening. Moreover, simulations for larger system sizes suggest a breakdown of scaling behaviour at the largest scales, suggesting that the previously reported scaling behaviour may be effective and restricted to relatively small systems.
    Colecciones a las que pertenece
    • D20 Artículos [468]
    • D20 Proyectos de Investigación [326]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España