Mostrar el registro sencillo

dc.contributor.authorHayrapetyan, A.
dc.contributor.authorTumasyan, A.
dc.contributor.authorBhowmik, Sandeep
dc.contributor.authorBlanco Fernández, Sergio 
dc.contributor.authorBrochero Cifuentes, Javier Andrés 
dc.contributor.authorCabrillo Bartolomé, José Ibán
dc.contributor.authorCalderón Tazón, Alicia 
dc.contributor.authorDuarte Campderros, Jorge 
dc.contributor.authorFernández García, Marcos 
dc.contributor.authorGómez Gramuglio, Gervasio 
dc.contributor.authorLasaosa García, Clara
dc.contributor.authorMartínez Rivero, Celso
dc.contributor.authorMartínez Ruiz del Árbol, Pablo 
dc.contributor.authorMatorras Cuevas, Pablo 
dc.contributor.authorMatorras Weinig, Francisco 
dc.contributor.authorNavarrete Ramos, Efrén
dc.contributor.authorPiedra Gómez, Jonatan 
dc.contributor.authorScodellaro, Luca 
dc.contributor.authorVila Álvarez, Iván 
dc.contributor.authorVizán García, Jesús Manuel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-03-24T19:04:34Z
dc.date.available2025-03-24T19:04:34Z
dc.date.issued2024-12-04
dc.identifier.issn1029-8479
dc.identifier.issn1126-6708
dc.identifier.urihttps://hdl.handle.net/10902/36082
dc.description.abstractA measurement is performed of Higgs bosons produced with high transverse momentum (pT) via vector boson or gluon fusion in proton-proton collisions. The result is based on a data set with a center-of-mass energy of 13 TeV collected in 2016-2018 with the CMS detector at the LHC and corresponds to an integrated luminosity of 138 fb-1. The decay of a high-pT Higgs boson to a boosted bottom quark-antiquark pair is selected using largeradius jets and employing jet substructure and heavy-favor taggers based on machine learning techniques. Independent regions targeting the vector boson and gluon fusion mechanisms are defned based on the topology of two quark-initiated jets with large pseudorapidity separation. The signal strengths for both processes are extracted simultaneously by performing a maximum likelihood ft to data in the large-radius jet mass distribution. The observed signal strengths relative to the standard model expectation are 4.9 +1.9 -1.6 and 1.6 +1.7 -1.5 for the vector boson and gluon fusion mechanisms, respectively. A diferential cross section measurement is also reported in the simplifed template cross section framework.es_ES
dc.description.sponsorshipWe congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative stafs at CERN and at other CMS institutes for their contributions to the success of the CMS efort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so efectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: SC (Armenia), BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); ERC PRG, RVTT3 and MoER TK202 (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); SRNSF (Georgia); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LMTLT (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MES and NSC (Poland); FCT (Portugal); MESTD (Serbia); MCIN/AEI and PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); MHESI and NSTDA (Thailand); TUBITAK and TENMAK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, 758316, 765710, 824093, 101115353, 101002207, and COST Action CA16108 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Science Committee, project no. 22rl-037 (Armenia); the Belgian Federal Science Policy Ofce; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science — EOS” — be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010 and Fundamental Research Funds for the Central Universities (China); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Shota Rustaveli National Science Foundation, grant FR-22-985 (Georgia); the Deutsche Forschungsgemeinschaft (DFG), among others, under Germany’s Excellence Strategy — EXC 2121 “Quantum Universe” — 390833306, and under project number 400140256 — GRK2497; the Hellenic Foundation for Research and Innovation (HFRI), Project Number 2288 (Greece); the Hungarian Academy of Sciences, the New National Excellence Program — ÚNKP, the NKFIH research grants K 131991, K 133046, K 138136, K 143460, K 143477, K 146913, K 146914, K 147048, 2020-2.2.1-ED-2021-00181, and TKP2021- NKTA-64 (Hungary); the Council of Science and Industrial Research, India; ICSC — National Research Center for High Performance Computing, Big Data and Quantum Computing and FAIR — Future Artifcial Intelligence Research, funded by the NextGenerationEU program (Italy); the Latvian Council of Science; the Ministry of Education and Science, project no. 2022/WK/14, and the National Science Center, contracts Opus 2021/41/B/ST2/01369 and 2021/43/B/ST2/01552 (Poland); the Fundação para a Ciência e a Tecnologia, grant CEECIND/01334/2018 (Portugal); the National Priorities Research Program by Qatar National Research Fund; MCIN/AEI/10.13039/501100011033, ERDF “a way of making Europe”, and the Programa Estatal de Fomento de la Investigación Científca y Técnica de Excelencia María de Maeztu, grant MDM-2017-0765 and Programa Severo Ochoa del Principado de Asturias (Spain); the Chulalongkorn Academic into Its 2nd Century Project Advancement Project, and the National Science, Research and Innovation Fund via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, grant B39G670016 (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (U.S.A.).es_ES
dc.format.extent47 p.es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsCopyright CERN, for the beneft of the CMS Collaboration. Article funded by SCOAP3.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceJournal of High Energy Physics, 2024, 2024, 35es_ES
dc.subject.otherHadron-Hadron Scatteringes_ES
dc.subject.otherHiggs Physicses_ES
dc.titleMeasurement of boosted Higgs bosons produced via vector boson fusion or gluon fusion in the H →bb¯ decay mode using LHC proton-proton collision data at s = 13 TeVes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1007/JHEP12(2024)035
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Copyright CERN, for the beneft of the CMS Collaboration. Article funded by SCOAP3.Excepto si se señala otra cosa, la licencia del ítem se describe como Copyright CERN, for the beneft of the CMS Collaboration. Article funded by SCOAP3.