Mostrar el registro sencillo

dc.contributor.authorPeréz-Suay, Adrián
dc.contributor.authorLaparra, Valero
dc.contributor.authorVan Vaerenbergh, Steven
dc.contributor.authorPascual-Venteo, Ana B.
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-03-14T18:25:07Z
dc.date.available2025-03-14T18:25:07Z
dc.date.issued2024
dc.identifier.issn1932-8540
dc.identifier.issn2374-0132
dc.identifier.urihttps://hdl.handle.net/10902/36017
dc.description.abstractLearning Management Systems (LMS) serve as integral tools for executing and evaluating the educational journey. As students engage with the platform, LMS consistently collect valuable data on their learning progress. This study employs statistically-driven methodologies to gain insights into student performance, focusing exclusively on data derived from Moodle LMS, a widely adopted platform across educational institutions globally. In particular we take advantage of the Gaussian Process regression method in order to predict the marks of the students given their activity in Moodle, achieving up to 0.89 R. Besides the use of an advanced kernel, the Automatic Relevance Determination (ARD), allows us to analyse which variables are more relevant when predicting the continuous mark and which are relevant to predict the final mark. Analysing logged data spanning various subjects and degrees, our findings reveals the significance of the frequency of interactions with the LMS as a robust indicator of student performance. This observation suggests the potential utility of interaction metrics as effective measures for monitoring and assessing students' ongoing learning trajectories. The implications of these results can extend to informing educational strategies and interventions to enhance student outcomes within the higher education field.es_ES
dc.format.extent7 p.es_ES
dc.language.isoenges_ES
dc.publisherIEEE Education Societyes_ES
dc.rights© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceRevista Iberoamericana de Tecnologías del Aprendizaje, 2024, 19, 169 -175es_ES
dc.subject.otherStudent performancees_ES
dc.subject.otherMoodlees_ES
dc.subject.otherLearning management systemes_ES
dc.subject.otherGaussian process regressiones_ES
dc.titleLearning about student performance from Moodle logs in a higher education context with gaussian processeses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/RITA.2024.3465035es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1109/RITA.2024.3465035
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.