The champernowne constant is not poissonian
Ver/ Abrir
Identificadores
URI: https://hdl.handle.net/10902/35966DOI: 10.7169/facm/1749
ISSN: 0208-6573
ISSN: 2080-9433
Registro completo
Mostrar el registro completo DCFecha
2019-06Derechos
© 2024 Adam Mickiewicz University
Publicado en
Functiones et Approximatio, Commentarii Mathematici, 2019, 60(2), 253-262
Editorial
Adam Mickiewicz University
Enlace a la publicación
Palabras clave
Poissonian pair correlation
Normal numbers
Resumen/Abstract
In this note we study the pair correlation statistics for the sequence of shifts of α, xn = {2n α}, n = 1, 2, 3, . . ., where we choose α as the Champernowne constant in base 2. Throughout this article {·} denotes the fractional part of a real number. It is well known that (xn)n∈N has Poissonian pair correlations for almost all normal numbers α (in the sense of Lebesgue), but we will show that it does not have this property for all normal numbers α, as it fails to be Poissonian for the Champernowne constant.
Colecciones a las que pertenece
- D21 Artículos [417]