Mostrar el registro sencillo

dc.contributor.authorBrands, Swen Franz 
dc.contributor.authorIturbide Martínez de Albéniz, Maialen 
dc.contributor.authorDíez González-Pardo, Jaime 
dc.contributor.authorHerrera García, Sixto 
dc.contributor.authorBedía Jiménez, Joaquín
dc.contributor.authorManzanas, Rodrigo
dc.contributor.authorRodriguez Guisado, Esteban
dc.contributor.authorBeguería Portugués, Santiago
dc.contributor.authorVicente Serrano, Sergio Martín
dc.contributor.authorGutiérrez Llorente, José Manuel
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-03-11T12:13:16Z
dc.date.available2025-03-11T12:13:16Z
dc.date.issued2025-04
dc.identifier.issn2405-8807
dc.identifier.urihttps://hdl.handle.net/10902/35959
dc.description.abstractWe evaluate different methodological choices for seasonal drought prediction over the Mediterranean region with the multi-dimensional Standardised Evapotranspiration Precipitation Index accumulated over a 3-month time-scale (SPEI-3), based on the ECMWF SEAS5.1 operational prediction system. We analyse two strategies for constructing the index backfilling data prior to model initialization, using real-time quasi-observations from the ERA5 reanalysis (SPEI-3-R), or model data from previous initializations of the same prediction system (SPEI- 3-M), and show that model skill is sensitive to these methodological choices. The long 42-year hindcast/prediction record available for this model (1981-2022) allows for a robust skill assessment. A window of significant skill, extending from May to October, is detected over the Iberian Peninsula. This window arises from the cumulative and multivariate nature of the index and cannot entirely be explained by the individual skill of the components, nor by the warming trend during the validation period. Based on these results, seasonal drought predictions relying on the SPEI are currently being enabled in the framework of a new generation of climate services developed in Spain. These go beyond alternative applications available to-date, which usually rely on simpler indices and/or shorter model verification periods.es_ES
dc.description.sponsorshipThis research work was funded by the Spanish Ministry for Ecological Transition and Demographic Challenge (MITECO) and the European Commission NextGenerationEU (Regulation EU 2020/2094), through CSIC’s Interdisciplinary Thematic Platform Clima (PTI-Clima). We also acknowledge the support of ECMWF’s Copernicus Climate Change Service national collaboration programme, under contract C3S2_461-1_ES_CSIC.es_ES
dc.format.extent16 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevier B.V.es_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceClimate Services, 2025, 38, 100555es_ES
dc.subject.otherSeasonal forecastinges_ES
dc.subject.otherDroughtes_ES
dc.subject.otherSPEIes_ES
dc.subject.otherNumerical Modellinges_ES
dc.subject.otherIberian peninsulaes_ES
dc.subject.otherMediterraneanes_ES
dc.titleSeasonal drought predictions in the Mediterranean using the SPEI index: paving the way for their operational applicability in climate serviceses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.cliser.2025.100555es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.cliser.2025.100555
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International