Mostrar el registro sencillo

dc.contributor.authorEgorova, Vera 
dc.contributor.authorCasabán Bartual, María Consuelo
dc.contributor.authorCompany Rossi, Rafael
dc.contributor.authorJódar Sánchez, Lucas Antonio
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-03-06T08:55:39Z
dc.date.available2025-03-06T08:55:39Z
dc.date.issued2025-04
dc.identifier.issn2238-3603
dc.identifier.issn0101-8205
dc.identifier.issn1807-0302
dc.identifier.otherPDC2022-133115-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/35901
dc.description.abstractFree-boundary diffusive logistic model finds applications in diverse fields associated with population dynamics. These processes often possess stochastic characteristics and involve parameters with uncertainties. This study focuses on enhancing a two-dimensional diffusive logistic partial differential model with free boundary by incorporating randomness in the mean square sense, considering the conditions for well-posedness in the random case, which is crucial for the further analysis. Both unknown stochastic processes the solution and its moving front, and the parameters involved in the random problem as random variables, are constrained by a finite degree of randomness. To tackle this challenge, we propose a random level set method. Given the complexity of the problem, we employ alternating direction explicit methods for the interior solvers, to effectively address computational challenges. Since computing the mean and the standard deviation of both unknown stochastic processes are required, we combine the sample approach of the difference schemes together with Monte Carlo technique avoiding the storage accumulation of symbolic expressions of all the previous levels of the iteration process. Parallel computing is employed to enhance performance. A careful numerical analysis is performed in the mean square context to ensure stability, positivity, and boundedness. The set of presented examples illustrates these qualitative prop erties, assess numerical convergence and enables us to gain a deeper understanding of the system’s behavior attending to the geometry of the initial habitat. This approach provides valuable tools for analyzing and predicting spreading-vanishing dichotomy.es_ES
dc.description.sponsorshipOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Naturees_ES
dc.format.extent34 p.es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceComputational and Applied Mathematics, 2025, 44(3),148es_ES
dc.subject.otherRandom Stefan problemes_ES
dc.subject.otherMean square calculuses_ES
dc.subject.otherFinite degree of randomnesses_ES
dc.subject.otherDiffusive logistic modeles_ES
dc.subject.otherLevel set methodes_ES
dc.subject.otherAlternating direction explicit methodes_ES
dc.titleTracking interfaces in a random logistic free-boundary diffusion problems: a random level set methodes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1007/s40314-025-03107-zes_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PDC2022-133115-I00/ES/BE A BETTER DIGITAL FIRE-FIGHTER/es_ES
dc.identifier.DOI10.1007/s40314-025-03107-z
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International