This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Cryptography and Communications, 2018, 10(6), 1037-1049
Depending on the parity of n and the regularity of a bent function f from Fn p to Fp, f can be affine on a subspace of dimension at most n/2, (n−1)/2 or n/2−1. We point out that many p-ary bent functions take on this bound, and it seems not easy to find examples for which one can show a different behaviour. This resembles the situation for Boolean bent functions of which many are (weakly) n/2-normal, i.e. affine on a n/2-dimensional subspace. However applying an algorithm by Canteaut et.al., some Boolean bent functions were shown to be not n/2-normal. We develop an algorithm for testing normality for functions from Fn p to Fp. Applying the algorithm, for some bent functions in small dimension we show that they do not take on the bound on normality. Applying direct sum of functions this yields bent functions with this property in infinitely many dimensions.