Mostrar el registro sencillo

dc.contributor.authorOuadefli, Mostapha
dc.contributor.authorEt-tolba, Mohamed
dc.contributor.authorTribak, Abdelwahed
dc.contributor.authorFernández Ibáñez, Tomás 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-03-04T16:31:43Z
dc.date.available2025-03-04T16:31:43Z
dc.date.issued2025-02
dc.identifier.issn1937-8718
dc.identifier.urihttps://hdl.handle.net/10902/35852
dc.description.abstractNeural networks have become a focal point for their ability to effectively capture the complex nonlinear characteristics of power amplifiers (PAs) and facilitate the design of digital predistortion (DPD) circuits. This is accomplished through the utilization of nonlinear activation functions (AFs) that are the cornerstone in a neural network architecture. In this paper, we delve into the influence of eight carefully selected AFs on the performance of the neural network-based DPD. We particularly explore their interaction with both the depth and width of neural network. In addition, we provide an extensive performance analysis using two crucial metrics: the normalized mean square error (NMSE) and adjacent channel power ratio (ACPR). Our findings highlight the superiority of the exponential linear unit activation function (ELU AF), particularly within deep neural network (DNN) frameworks, among the AFs under consideration.es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherEMW Publishinges_ES
dc.rights© EMW Publishing. The Electromagnetics Academy. Reproduced courtesy of The Electromagnetics Academyes_ES
dc.sourceProgress in Electromagnetics Research C, 2025, 152, 111-120es_ES
dc.titleOn selecting activation functions for neural network-based digital predistortion modelses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.2528/PIERC24120508
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo