dc.contributor.author | Gutiérrez Gutiérrez, Jaime | |
dc.contributor.author | Jiménez Urroz, Jorge | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2025-03-03T19:23:17Z | |
dc.date.available | 2025-03-03T19:23:17Z | |
dc.date.issued | 2025-03 | |
dc.identifier.issn | 2190-7668 | |
dc.identifier.issn | 1012-9405 | |
dc.identifier.uri | https://hdl.handle.net/10902/35837 | |
dc.description.abstract | Let Fq be the finite field with q elements and Fq [x1, . . . , xn] the ring of polynomials in n variables over Fq . In this paper we consider permutation polynomials and local permutation polynomials over Fq [x1, . . . , xn], which define interesting generalizations of permutations over finite fields. We are able to construct permutation polynomials in Fq [x1, . . . , xn] of maximum degree n(q - 1) -1 and local permutation polynomials in Fq [x1, . . . , xn] of maximum degree n(q - 2) when q > 3, extending previous results | es_ES |
dc.description.sponsorship | Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature | es_ES |
dc.format.extent | 11 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Springer | es_ES |
dc.rights | Attribution 4.0 International | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.source | Afrika Matematika, 2025, 36(1), 45 | es_ES |
dc.subject.other | Permutation polynomial | es_ES |
dc.subject.other | Dickson polynomial | es_ES |
dc.subject.other | Local permutation polynomials | es_ES |
dc.subject.other | Finite Fields | es_ES |
dc.title | Permutation and local permutation polynomials of maximum degree | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1007/s13370-025-01247-3 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.1007/s13370-025-01247-3 | |
dc.type.version | publishedVersion | es_ES |