dc.contributor.author | Fernández Ruiz, Toraya | |
dc.contributor.author | Sánchez de Movellán Sáiz, Inés | |
dc.contributor.author | García Lastra, Juan María | |
dc.contributor.author | Moreno Mas, Miguel | |
dc.contributor.author | Aramburu-Zabala Higuera, José Antonio | |
dc.contributor.author | García Fernández, Pablo (físico) | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2025-03-03T16:47:19Z | |
dc.date.available | 2025-03-03T16:47:19Z | |
dc.date.issued | 2024-06 | |
dc.identifier.issn | 1948-7185 | |
dc.identifier.other | PID2022-139776NB-C63 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10902/35833 | |
dc.description.abstract | Spatial degeneracy is the cause of the complex electronic, geometrical, and magnetic structures found in a number of materials whose more representative example is KCuF₃. In the literature the properties of this lattice are usually explained through the Kugel−-Khomskii model, based on superexchange interactions. Here we provide rigorous theoretical and computational arguments against this view proving that structural and magnetic properties essentially arise from electron−vibration (vibronic) interactions. Moreover, based on the work of Öpik and Pryce, we show that the coupling between lattice (homogeneous strain) and motif (phonons) distortions is essential to understand the main stable configurations of the lattice. Using this information, we predict a new low-energy phase in KCuF₃ that could strongly alter its properties and provide guidance on how to stabilize it through strain engineering. | es_ES |
dc.description.sponsorship | We acknowledge financial support from Grant No. PID2022-139776NB-C63 funded by MCIN/AEI/10.13039/501100011033. T.F.-R. (Grant PRE2019-089054) acknowledges financial support from Ministerio de Ciencia, Innovación y Universidades, while I.S.-M. (Grant BDNS:589170) acknowledges financial support from Universidad de Cantabria and Gobierno de Cantabria. | es_ES |
dc.format.extent | 6 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | American Chemical Society | es_ES |
dc.rights | Copyright © 2024 The Authors. Published by American Chemical Society. This publication is licensed under CC-BY 4.0. | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.source | Journal of Physical Chemistry Letters, 2024, 15(25), 6476-6481 | es_ES |
dc.title | Strain-phonon cooperation as a necessary ingredient to understand the Jahn-Teller effect in solids | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1021/acs.jpclett.4c01256 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-139776NB-C63/ES/ECOSISTEMA SIESTA DE TECNICAS DE SIMULACION DE MATERIALES (SIESTA-UC)/ | es_ES |
dc.identifier.DOI | 10.1021/acs.jpclett.4c01256 | |
dc.type.version | publishedVersion | es_ES |