Mostrar el registro sencillo

dc.contributor.authorGutiérrez Vela, Yael 
dc.contributor.authorVázquez-Miranda, Saúl
dc.contributor.authorEspinoza, Shirly
dc.contributor.authorKhakurel, Krishna
dc.contributor.authorRebarz, Mateusz
dc.contributor.authorZhang, Zhen
dc.contributor.authorSaiz Vega, José María 
dc.contributor.authorRamanathan, Shriram
dc.contributor.authorCueff, Sébastien
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-02-20T17:42:14Z
dc.date.available2025-02-20T17:42:14Z
dc.date.issued2024-11-20
dc.identifier.issn2330-4022
dc.identifier.urihttps://hdl.handle.net/10902/35708
dc.description.abstractWe report the first application of broadband time-resolved pump-probe ellipsometry to study the ultrafast dynamics of the photoinduced insulator-to-metal transition (IMT) in vanadium dioxide (VO₂) thin films driven by 35 fs laser pulses. This novel technique enables the direct measurement of the time-resolved evolution of the complex pseudodielectric function of VO₂ during the IMT. We have identified distinct thermal and nonthermal dynamics in the photoinduced IMT, which critically depends on the pump wavelength and fluence, while providing a detailed temporal and spectral phase map. A comparison of the pseudodielectric function of the VO₂ thin film during thermally and photoinduced phase transitions reveals that the primary differences in the IMT pathways occur within the first picosecond after the pump, driven by nonequilibrium dynamics in this ultrafast time scale. The ultrafast spectroscopic ellipsometry introduced in this work offers a complementary probe to study phase changes in condensed matter and emerging photonic device materials.es_ES
dc.description.sponsorshipY.G. acknowledges the support from the European Union’s Horizon 2020 research and innovation program (No 899598 - PHEMTRONICS) and funding from a Ramon y Cajal Fellowship (RYC2022-037828-I). S.R. acknowledges AFOSR grant FA9550-18-1-0250 for support. S.C. acknowledges funding from the French National Research Agency (ANR) under the project MetaOnDemand (ANR-20-CE24-0013). S.E, S.V.-M., and M.R. acknowledge the project ADONIS (No. CZ.02.1.01/0.0/0.0/16-019/0000789).es_ES
dc.format.extent11 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.rights© 2024 The Authors. Published by American Chemical Society. This publication is licensed under CC-BY 4.0.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceACS Photonics, 2024, 11(11), 4883-4893es_ES
dc.subject.otherInsulator-to-metal transitiones_ES
dc.subject.otherVanadium dioxidees_ES
dc.subject.otherUltrafastes_ES
dc.subject.otherPump−probe spectroscopyes_ES
dc.subject.otherSpectroscopic ellipsometryes_ES
dc.titleSubpicosecond spectroscopic ellipsometry of the photoinduced phase transition in VO₂ thin filmses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1021/acsphotonics.4c01414es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/ 899598/eu/Active Optical Phase-Change Plasmonic Transdimensional Systems Enabling Femtojoule and Femtosecond Extreme Broadband Adaptive Reconfigurable Devices/PHEMTRONICS/es_ES
dc.identifier.DOI10.1021/acsphotonics.4c01414
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2024 The Authors. Published by American Chemical Society. This publication is licensed under CC-BY 4.0.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2024 The Authors. Published by American Chemical Society. This publication is licensed under CC-BY 4.0.