dc.contributor.author | Nozal, Raúl | |
dc.contributor.author | Bosque Orero, José Luis | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2025-02-20T17:27:56Z | |
dc.date.available | 2025-02-20T17:27:56Z | |
dc.date.issued | 2025-02 | |
dc.identifier.issn | 0920-8542 | |
dc.identifier.issn | 1573-0484 | |
dc.identifier.other | PID2022-136454NB-C21 | es_ES |
dc.identifier.other | TED2021-131176B-I00 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10902/35706 | |
dc.description.abstract | The performance and energy efficiency offered by heterogeneous systems are highly useful for modern C++ applications, but the technological variety demands adequate portability and programmability. Initiatives such as Intel oneAPI facilitate the exploitation of Intel CPUs and GPUs, but not NVIDIA GPUs, which are present in
systems of all kinds and are necessarily leveraged by CUDA technology. Frequently, only GPUs are used, leaving the CPU for management tasks, with the consequent loss of energy and system utilization. In this work, the CoexecutorRuntime system design and API are extended to transparently integrate backends of diverse technologies, unifying offloading mechanisms under a consistent co-execution API and scheduling runtime. Moreover, CPU-GPU co-execution of hybrid technologies is enabled to ensure performance portability. Experimental results show performance improvements for all programs studied, achieving average efficiencies of 0.91 and speedups of 1.31 over using only the GPU. | es_ES |
dc.description.sponsorship | This work has been supported by the Spanish Science and Technology Commission under contract PID2022-136454NB-C21, the Ministerio de Ciencia e Innovación; Proyectos de Transición Ecológica y Digital 2021 under grant TED2021-131176B-I00 and the European HiPEAC Network of Excellence. | es_ES |
dc.format.extent | 17 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Kluwer Academic Publishers | es_ES |
dc.rights | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.source | Journal of Supercomputing, 2025, 81(3), 452 | es_ES |
dc.subject.other | Heterogeneous computing | es_ES |
dc.subject.other | Hybrid parallel computing | es_ES |
dc.subject.other | Co-execution | es_ES |
dc.subject.other | SYCL | es_ES |
dc.subject.other | OpenCL | es_ES |
dc.subject.other | CUDA | es_ES |
dc.subject.other | OneAPI | es_ES |
dc.subject.other | Performance portability | es_ES |
dc.subject.other | LLVM | es_ES |
dc.subject.other | Usability | es_ES |
dc.subject.other | Load balancing | es_ES |
dc.title | CPU-GPU co-execution through the exploitation of hybrid technologies via SYCL | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1007/s11227-025-06963-y | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-136454NB-C21/ES/ARQUITECTURA Y PROGRAMACION DE COMPUTADORES ESCALABLES DE ALTO RENDIMIENTO Y BAJO CONSUMO III-UC (TEAM-MATES UC)/ | es_ES |
dc.identifier.DOI | 10.1007/s11227-025-06963-y | |
dc.type.version | publishedVersion | es_ES |