Mostrar el registro sencillo

dc.contributor.authorLópez, Marta
dc.contributor.authorStafford Fernández, Esteban 
dc.contributor.authorBosque Orero, José Luis 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-02-20T17:21:20Z
dc.date.available2025-02-20T17:21:20Z
dc.date.issued2025-01
dc.identifier.issn0920-8542
dc.identifier.issn1573-0484
dc.identifier.otherPID2022-136454NB-C21es_ES
dc.identifier.otherTED2021-131176B-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/35705
dc.description.abstractIn recent years, energy consumption has become a limiting factor in the evolution of high-performance computing (HPC) clusters in terms of environmental concern and maintenance cost. The computing power of these clusters is increasing, together with the demands of the workloads they execute. A key component in HPC systems is the workload manager, whose operation has a substantial impact on the performance and energy consumption of the clusters. Recent research has employed machine learning techniques to optimise the operation of this component. However, these attempts have focused on homogeneous clusters where all the cores are pooled together and considered equal, disregarding the fact that they are contained in nodes and that they can have different performances. This work presents an intelligent job scheduler based on deep reinforcement learning that focuses on reducing energy consumption of heterogeneous HPC clusters. To this aim it leverages information provided by the users as well as the power consumption specifications of the compute resources of the cluster. The scheduler is evaluated against a set of heuristic algorithms showing that it has potential to give similar results, even in the face of the extra complexity of the heterogeneous cluster.es_ES
dc.description.sponsorshipThis work has been supported by the Spanish Science and Technology Commission under contract PID2022-136454NB-C21, the Ministerio de Ciencia e Innovación; Proyectos de Transición Ecológica y Digital 2021 under grant TED2021-131176B-I00 and the European HiPEAC Network of Excellence.es_ES
dc.format.extent23 p.es_ES
dc.language.isoenges_ES
dc.publisherKluwer Academic Publisherses_ES
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceJournal of Supercomputing, 2025, 81(2), 427es_ES
dc.subject.otherTask schedulinges_ES
dc.subject.otherDeep reinforcement learninges_ES
dc.subject.otherHigh-performance computinges_ES
dc.subject.otherHeterogeneous clusterses_ES
dc.subject.otherEnergy consumptiones_ES
dc.titleIntelligent energy pairing scheduler (InEPS) for heterogeneous HPC clusterses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1007/s11227-024-06907-yes_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-136454NB-C21/ES/ARQUITECTURA Y PROGRAMACION DE COMPUTADORES ESCALABLES DE ALTO RENDIMIENTO Y BAJO CONSUMO III-UC (TEAM-MATES UC)/es_ES
dc.identifier.DOI10.1007/s11227-024-06907-y
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.Excepto si se señala otra cosa, la licencia del ítem se describe como This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.