Mostrar el registro sencillo

dc.contributor.authorResl, J.
dc.contributor.authorHingerl, K.
dc.contributor.authorGutiérrez Vela, Yael 
dc.contributor.authorLosurdo, M.
dc.contributor.authorCobet, C.
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-02-20T17:14:51Z
dc.date.available2025-02-20T17:14:51Z
dc.date.issued2024-11-05
dc.identifier.issn0021-8979
dc.identifier.issn1089-7550
dc.identifier.issn1520-8850
dc.identifier.urihttps://hdl.handle.net/10902/35704
dc.description.abstractWe present a novel simulation approach combined with pulsed laser experiments, spectroscopic ellipsometry, and Raman spectroscopy to comprehensively analyze phase transformation dynamics in thin films. The simulations apply to any thin film stack and incorporate critical factors, such as thin film interference, heat transfer, and temperature-dependent optical properties during heating and melting. As a case study, we investigate the picosecond laser-induced amorphization of antimony sulfide (Sb₂S₃) thin films, a promising alternative to traditional phase-change materials in photonic applications to validate the simulation model. The computational efficiency of our simulations enables not only the investigation of the laser-induced phase transformation but also the optimization of key process parameters and parameter fitting. The simulations identified optimal film thickness and laser fluence parameters that maximize energy efficiency, melting effectiveness, and quenching rate while ensuring high reflectivity contrast between the amorphous and crystalline states. By constructing a wide-ranging, high-resolution parameter map of the laser fluence and film thickness dependence of the melting process, we demonstrate how this model guides the understanding of phase transformation dynamics. Raman spectroscopy confirms the polycrystalline to amorphous transition of Sb₂S₃ and provides a semiquantitative estimate of the amorphous fraction as a function of laser fluence, which is qualitatively consistent with the simulation predictions of the model. The open-source simulation framework, experimentally validated, provides valuable insights into laser-induced amorphization dynamics in Sb₂S₃ and related phase-change material thin films, enabling rapid optimization of photonic devices.es_ES
dc.description.sponsorshipThe authors acknowledge support from the European Union’s Horizon 2020 research and innovation program (No. 899598—PHEMTRONICS), the Ramon y Cajal Fellowship (No. RYC2022-037828-I) from the Ministerio de Ciencia, Innovación y Universidades (MCIU), and the Danube Project (Project No. MULT 07/2023) from the OeAD-GmbH (OEAD).es_ES
dc.format.extent16 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Institute of Physicses_ES
dc.rights© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0224152es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceJournal of Applied Physics, 2024, 136(17), 173108es_ES
dc.titleOptimizing laser-induced phase transformations in Sb₂S₃ thin films: simulation framework and experimentses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1063/5.0224152es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/ 899598/eu/Active Optical Phase-Change Plasmonic Transdimensional Systems Enabling Femtojoule and Femtosecond Extreme Broadband Adaptive Reconfigurable Devices/PHEMTRONICS/es_ES
dc.identifier.DOI10.1063/5.0224152
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0224152Excepto si se señala otra cosa, la licencia del ítem se describe como © 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0224152