Mostrar el registro sencillo

dc.contributor.authorMatamoros, Asael Alonzo
dc.contributor.authorNieto Reyes, Alicia 
dc.contributor.authorAgostinelli, Claudio
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-02-18T13:37:11Z
dc.date.available2025-02-18T13:37:11Z
dc.date.issued2024
dc.identifier.issn2073-4859
dc.identifier.otherPID2022-139237NB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/35589
dc.description.abstractNormality is the central assumption for analyzing dependent data in several time series models, and the literature has widely studied normality tests. However, the implementations of these tests are limited. The nortsTest package is dedicated to fill this void. The package performs the asymptotic and bootstrap versions of the tests of Epps and Lobato and Velasco and the tests of Psaradakis and Vavra, random projections and El Bouch for normality of stationary processes. These tests are for univariate stationary processes but for El Bouch that also allows bivariate stationary processes. In addition, the package offers visual diagnostics for checking stationarity and normality assumptions for the most used time series models in several R packages. This work aims to show the package?s functionality, presenting each test performance with simulated examples and the package utility for model diagnostic in time series analysis.es_ES
dc.description.sponsorshipThis work was supported by grant PID2022-139237NB-I00 funded by “ERDF A way of making Europe” and MCIN/AEI/10.13039/501100011033.es_ES
dc.format.extent22 p.es_ES
dc.language.isoenges_ES
dc.publisherR Foundation for Statistical Computinges_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceThe R Journal, 2024, 16(1), 135-156es_ES
dc.titlenortsTest: an R package for assessing normality of stationary processeses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttp://doi.org/10.32614/RJ-2024-008es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-139237NB-I00/ES/ORDEN: PROFUNDIDAD ESTADISTICA/es_ES
dc.identifier.DOI10.32614/RJ-2024-008
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International