Mostrar el registro sencillo

dc.contributor.authorMcGuire, K.J.
dc.contributor.authorChavarria, A.E.
dc.contributor.authorCastello-Mor, N.
dc.contributor.authorLee, S.
dc.contributor.authorKilminster, B.
dc.contributor.authorVilar Cortabitarte, Rocío 
dc.contributor.authorAlvarez, A.
dc.contributor.authorJung, J.
dc.contributor.authorCuevas-Zepeda, J.
dc.contributor.authorDominicis, C. De
dc.contributor.authorGaïor, R.
dc.contributor.authorIddir, L.
dc.contributor.authorLetessier-Selvon, A.
dc.contributor.authorLin, H.
dc.contributor.authorMunagavalasa, S.
dc.contributor.authorNorcini, D.
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-02-17T16:35:03Z
dc.date.available2025-02-17T16:35:03Z
dc.date.issued2024-08
dc.identifier.issn1550-7998
dc.identifier.issn1550-2368
dc.identifier.issn2470-0010
dc.identifier.issn2470-0029
dc.identifier.otherPID2019-109829GB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/35560
dc.description.abstractCharge-coupled devices (CCDs) are a leading technology in direct searches for dark matter because of their eV-scale energy threshold and micrometer-scale spatial resolution. Recent studies have also highlighted the potential for using CCDs to detect coherent elastic neutrino-nucleus scattering. The sensitivity of future CCD experiments could be enhanced by distinguishing nuclear recoil signals from electronic recoil backgrounds in the CCD silicon target. We present a technique for event-by-event identification of nuclear recoils based on the spatial correlation between the primary ionization event and the defect cluster left behind by the recoiling atom, later identified as a localized excess of leakage current under thermal stimulation. By irradiating a CCD with an ²⁴¹ Am⁹Be neutron source, we demonstrate >93% identification efficiency for nuclear recoils with energies >150  keV, where the coincident ionization events were confirmed to be nuclear recoils due to their topology. The technique remains fully efficient down to 90 keV, decreasing to 50% at 8 keV and reaching (6±2)% between 1.5 and 3.5 keV. Irradiation with a ²⁴Na gamma-ray source does not result in any detectable defect clusters, with the fraction of electronic recoils with energies <85  keV that are spatially correlated with defects <0.1%.es_ES
dc.description.sponsorshipWe acknowledge financial support from the following agencies and organizations: the U.S. Department of Energy Office of Science through the Dark Matter New Initiatives program; the U.S. National Science Foundation through Grant No. NSF PHY-2110585 to the University of Washington and The University of Chicago; Swiss National Science Foundation through Grant No. 200021_153654 and via the Swiss Canton of Zurich; IFCA through Project No. PID2019–109829GB-I00 funded by MCIN/AEI. We thank the College of Arts and Sciences at the University of Washington for contributing the first CCDs to the DAMIC-M project. The CCD development at Lawrence Berkeley National Laboratory MicroSystems Lab was supported in part by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Physical Societyes_ES
dc.rights© American Physical Societyes_ES
dc.sourcePhysical Review D, 2024, 110(4), 043008es_ES
dc.titleNuclear recoil identification in a scientific charge-coupled devicees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1103/PhysRevD.110.043008es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-118990GB-I00/ES/GLENDAMA: DESCUBRIMIENTOS, OBSERVACIONES Y ESTUDIOS DE SISTEMAS LENTE GRAVITATORIA/es_ES
dc.identifier.DOI10.1103/PhysRevD.110.043008
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo