Mostrar el registro sencillo

dc.contributor.authorHosseini Hossein Abadi, Farzad
dc.contributor.authorPrieto Sierra, Cristina
dc.contributor.authorÁlvarez Díaz, César 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-02-14T09:14:34Z
dc.date.available2025-02-14T09:14:34Z
dc.date.issued2025-01
dc.identifier.issn0022-1694
dc.identifier.issn1879-2707
dc.identifier.urihttps://hdl.handle.net/10902/35535
dc.description.abstractAccurate rainfall-runoff modeling is crucial for effective water resources management and planning, especially in flash catchments prone to rapid floods. This study investigates the performance of ensemble learning methods applied to regionally optimized deep learning models, specifically long short-term memory (LSTM) networks, for enhanced hydrological prediction. Three ensemble approaches were developed based on optimized regional hyperparameter settings: catchment-wise, top-10 regional, and K-means clustering selected configurations. These networks were trained, and the median of their simulations on the test set was considered the final prediction for each ensemble. The final predictions were then evaluated against observed data. Our findings show that ensemble learning methods consistently outperform conventional single-configuration approach of selecting the best regional setting in all locations, especially in catchments with prediction complexity or anthropogenic footprints. The catchment-wise ensemble demonstrated the highest prediction accuracy and robustness, highlighting the importance of tailoring network configurations to the unique characteristics of individual catchments. The findings highlight the potential of ensemble learning to significantly improve hydrological forecasts and inform better decision-making in water resources management. Specifically, this research demonstrates how ensemble learning of catchment-wise configurations can overcome limitations in regional hydrological predictions by deep learning models, addressing the "uniqueness of the place" paradigm.es_ES
dc.description.sponsorshipThis research was supported by the Instituto de Hidráulica Ambiental de la Universidad de Cantabria (IHCantabria), which funded the Ph.D. research and provided computational resources.es_ES
dc.format.extent17 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceJournal of Hydrology, 2025, 646, 132269es_ES
dc.subject.otherRegional hydrological modelinges_ES
dc.subject.otherLSTM networkses_ES
dc.subject.otherEnsemble learninges_ES
dc.subject.otherPost-random searches_ES
dc.subject.otherHourly predictiones_ES
dc.titleEnsemble learning of catchment-wise optimized LSTMs enhances regional rainfall-runoff modelling - case study: Basque Country, Spaines_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.jhydrol.2024.132269es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.jhydrol.2024.132269
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International