Mostrar el registro sencillo

dc.contributor.authorCandela de Aroca, Marina Teresa 
dc.contributor.authorMartín Rodríguez, Rosa 
dc.contributor.authorDíaz Moreno, Sofía
dc.contributor.authorValiente Barroso, Rafael 
dc.contributor.authorAguado Menéndez, Fernando 
dc.contributor.authorPerdigón Aller, Ana Carmen 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-02-12T15:16:08Z
dc.date.issued2025-04-15
dc.identifier.issn0021-9797
dc.identifier.issn1095-7103
dc.identifier.otherTED2021-131305B-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/35517
dc.description.abstractHigh-charge micas exhibit improved adsorption properties and are a promising alternative clay material for the engineered barrier in deep geological repositories. When combined with Eu3+ cations, they serve as an in situ luminescent probe for tracking the physical–chemical changes occurring in this engineered barrier over the long term. Therefore, a better understanding of the local environment of the lanthanide is highly desirable to comprehend the specific behavior of these systems. A combination of different techniques, (X-ray diffraction, thermogravimetry, fluorescence, and X-ray absorption spectroscopy), has allowed the study of the local environment of two luminescent lanthanide cations, Eu3+ and Gd3+, embedded in the galleries of two high-charge micas with different Si/Al tetrahedral ratio. The results show that the hydration state of these cations is primarily influenced by the layer charge of the aluminosilicate, and secondarily by the cation’s hydration enthalpy. High-charge micas doped with trivalent lanthanide cations are more hydrated compared to the original clays with Na+ in the interlayer. Nevertheless, both Eu3+ and Gd3+ are adsorbed as inner-sphere complexes in the galleries of high-charge micas. They are located inside the distorted hexagonal cavity in all cases, coordinated by 3 oxygens from the tetragonal sheet, one fluorine from the octahedral sheet, and by 2–4 oxygens from water molecules, all at distances around 2.4 Å. An additional oxygen atom at a distance of 3.45–3.50 Å, is proposed from an H2O molecule in the second coordination shell.es_ES
dc.description.sponsorshipThis work has been supported by the Spanish Ministerio de Ciencia e Innovación, Project ref. TED2021-131305B-I00 financed by MCIN/ AEI /10.13039/501100011033 and by the European Union-NextGenerationEU/PRTR. We would like to thank IDIVAL, Project INNVAL19/18 for financial support. M. T. Candela acknowledges the predoctoral grant “Concepción Arenal” (University of Cantabria- Government of Cantabria). The authors thank Diamond Light Source for beamtime (proposal SP19223-1) and financial support and the I20-Scanning beamline staff for all the assistance received.es_ES
dc.format.extent32 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2025. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Colloid and Interface Science, 2025, 684(1), 552-565es_ES
dc.subject.otherHigh-charge micases_ES
dc.subject.otherAdsorptiones_ES
dc.subject.otherEXAFSes_ES
dc.subject.otherLuminescent cationses_ES
dc.subject.otherEuropiumes_ES
dc.subject.otherGadoliniumes_ES
dc.titleAdsorption of Eu3+ and Gd3+ on high-charge micas as inner-sphere complexeses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.jcis.2025.01.015es_ES
dc.rights.accessRightsembargoedAccesses_ES
dc.identifier.DOI10.1016/j.jcis.2025.01.015
dc.type.versionacceptedVersiones_ES
dc.embargo.lift2027-04-15
dc.date.embargoEndDate2027-04-15


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2025. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2025. This manuscript version is made available under the CC-BY-NC-ND 4.0 license