Mostrar el registro sencillo

dc.contributor.authorAmiri Roodan, Venoos
dc.contributor.authorGómez Pastora, Jenifer 
dc.contributor.authorKarampelas, Ioannis H.
dc.contributor.authorGonzález Fernández, Cristina 
dc.contributor.authorBringas Elizalde, Eugenio 
dc.contributor.authorOrtiz Uribe, Inmaculada 
dc.contributor.authorChalmers, Jeffrey J.
dc.contributor.authorFurlani, Edward P.
dc.contributor.authorSwihart, Mark Thomas
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-02-11T17:09:06Z
dc.date.available2025-02-11T17:09:06Z
dc.date.issued2020-11-07
dc.identifier.issn1744-683X
dc.identifier.issn1744-6848
dc.identifier.otherRTI2018-093310-B-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/35482
dc.description.abstractWe present a numerical model that describes the microfluidic generation and manipulation of ferrofluid droplets under an external magnetic field. We developed a numerical Computational Fluid Dynamics (CFD) analysis for predicting and optimizing continuous flow generation and processing of ferrofluid droplets with and without the presence of a permanent magnet. More specifically, we explore the dynamics of oil-based ferrofluid droplets within an aqueous continuous phase under an external inhomogeneous magnetic field. The developed model determines the effect of the magnetic field on the droplet generation, which is carried out in a flow-focusing geometry, and its sorting in T-junction channels. Three-channel depths (25 um, 30 um, and 40 um) were investigated to study droplet deformation under magnetic forces. Among the three, the 30 um channel depth showed the most consistent droplet production for the studied range of flow rates. Ferrofluids with different loadings of magnetic nanoparticles were used to observe the behavior for different ratios of magnetic and hydrodynamic forces. Our results show that the effect of these factors on droplet size and generation rate can be tuned and optimized to produce consistent droplet generation and sorting. This approach involves fully coupled magnetic-fluid mechanics models and can predict critical details of the process including droplet size, shape, trajectory, dispensing rate, and the perturbation of the fluid co-flow for different flow rates. The model enables better understanding of the physical phenomena involved in continuous droplet processing and allows efficient parametric analysis and optimization.es_ES
dc.description.sponsorshipThe research of this work was financially supported by the National Heart, Lung, and Blood Institute from the United States National Institutes of Health (1R01HL131720–01A1). The Spanish Ministry of Science, Innovation and Universities under the project RTI2018–093310-B-I00 (MINECO/FEDER, UE), and the FPU postgraduate research grant (FPU18/03525) is acknowledged.es_ES
dc.format.extent29 p.es_ES
dc.language.isoenges_ES
dc.publisherRoyal Society of Chemistryes_ES
dc.rights© Royal Society of Chemistryes_ES
dc.sourceSoft Matter, 2020, 16(41), 9506-9518es_ES
dc.titleFormation and manipulation of ferrofluid droplets with magnetic fields in a microdevice: a numerical parametric studyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1039/D0SM01426Ees_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093310-B-I00/ES/SEPARACIONES MICROFLUIDICAS DE ELEVADO RENDIMIENTO. RETOS Y OPORTUNIDADES/
dc.identifier.DOI10.1039/D0SM01426E
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo