Mostrar el registro sencillo

dc.contributor.authorGómez Pastora, Jenifer 
dc.contributor.authorGonzález Fernández, Cristina 
dc.contributor.authorReal Peña, Eusebio 
dc.contributor.authorIles, Alexander
dc.contributor.authorBringas Elizalde, Eugenio 
dc.contributor.authorFurlani, Edward P.
dc.contributor.authorOrtiz Uribe, Inmaculada 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-02-11T17:08:18Z
dc.date.available2025-02-11T17:08:18Z
dc.date.issued2018-06-07
dc.identifier.issn1473-0197
dc.identifier.issn1473-0189
dc.identifier.otherCTQ2015-72364-EXPes_ES
dc.identifier.otherCTQ2015-66078-Res_ES
dc.identifier.urihttps://hdl.handle.net/10902/35481
dc.description.abstractMagnetic beads can be functionalized to capture and separate target pathogens from blood for extracorporeal detoxification. The beads can be magnetically separated from a blood stream and collected into a coflowing buffer solution using a two-phase liquid-liquid continuous-flow microfluidic device in the presence of an external field. However, device design and process optimization, i.e. high bead recovery with minimum blood loss or dilution remain a substantial technological challenge. We introduce a CFD-based Eulerian-Lagrangian computational model that enables the rational design and optimization of such systems. The model takes into account dominant magnetic and hydrodynamic forces on the beads as well as coupled bead-fluid interactions. Fluid flow (Navier-Stokes equations) and mass transfer (Fick's law) between the coflowing fluids are solved numerically, while the magnetic force on the beads is predicted using analytical methods. The model is demonstrated via application to a prototype device and used to predict key performance metrics; degree of bead separation, flow patterns, and mass transfer, i.e. blood diffusion to the buffer phase. The impact of different process variables and parameters - flow rates, bead and magnet dimensions and fluid viscosities - on both bead recovery and blood loss or dilution is quantified for the first time. The performance of the prototype device is characterized using fluorescence microscopy and the experimental results are found to match theoretical predictions within an absolute error of 15%. While the model is demonstrated here for analysis of a detoxification device, it can be readily adapted to a broad range of magnetically-enabled microfluidic applications, e.g.bioseparation, sorting and sensing.es_ES
dc.description.sponsorshipFinancial support from the Spanish Ministry of Economy and Competitiveness under the projects CTQ2015-72364-EXP and CTQ2015-66078-R (MINECO/FEDER) is gratefully acknowledged. Jenifer Gómez-Pastora also thanks the FPI postgraduate research grant (BES-2013-064415). Edward P. Furlani gratefully acknowledges financial support from the U.S. National Science Foundation, through Award CBET-1337860.es_ES
dc.format.extent14 p.es_ES
dc.language.isoenges_ES
dc.publisherRoyal Society of Chemistryes_ES
dc.rights© Royal Society of Chemistryes_ES
dc.sourceLab on a Chip, 2018, 18(11), 1593-1606es_ES
dc.titleComputational modeling and fluorescence microscopy characterization of a two-phase magnetophoretic microsystem for continuous-flow blood detoxificationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1039/C8LC00396Ces_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//CTQ2015-72364-EXP/ES/SEPARADOR MAGNETICO DE ENDOTOXINAS BACTERIANAS (LPS) EN EL TRATAMIENTO DE LA SEPSIS/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//CTQ2015-66078-R/ES/APLICACIONES AVANZADAS DE SEPARACION. MODELADO Y VALIDACION EXPERIMENTAL/es_ES
dc.identifier.DOI10.1039/C8LC00396C
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo