Mostrar el registro sencillo

dc.contributor.authorCasas Rentería, Eduardo 
dc.contributor.authorChrysafinos, Konstantinos
dc.contributor.authorMateos Alberdi, Mariano 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-02-11T17:05:14Z
dc.date.available2025-02-11T17:05:14Z
dc.date.issued2025-02
dc.identifier.issn0029-599X
dc.identifier.issn0945-3245
dc.identifier.otherPID2020-114837GB-I00es_ES
dc.identifier.otherPID2023-147610NB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/35479
dc.description.abstractIn this paper, we carry out the analysis of the semismooth Newton method for control constrained bilinear control problems of semilinear elliptic PDEs. We prove existence, uniqueness and regularity for the solution of the state equation, as well as differentia bility properties of the control to state mapping. Then, first and second order optimality conditions are obtained. Finally, we prove the superlinear convergence of the semis mooth Newton method to local solutions satisfying no-gap second order sufficient optimality conditions as well as a strict complementarity condition.es_ES
dc.description.sponsorshipThe first and third authors were supported by MCIN/ AEI/10.13039/501100011033/ under research projects PID2020-114837GB-I00 and PID2023-147610NB-I00. The second author was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant” (Project Number: 3270).es_ES
dc.format.extent21 p.es_ES
dc.language.isoenges_ES
dc.publisherSpringer New York LLCes_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceNumerische Mathematik, 2025, 157(1), 143-163es_ES
dc.titleBilinear control of semilinear elliptic PDEs: convergence of a semismooth Newton methodes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1007/s00211-024-01448-1es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-114837GB-I00/ES/CONTROL OPTIMO DE ECUACIONES EN DERIVADAS PARCIALES NO LINEALES. ESTUDIO TEORICO, ANALISIS NUMERICO Y APLICACIONES/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2023-147610NB-I00/ES/CONTROL OPTIMO DE ECUACIONES EN DERIVADAS PARCIALES: TEORIA, ANALISIS NUMERICO Y APLICACIONES/es_ES
dc.identifier.DOI10.1007/s00211-024-01448-1
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International