dc.contributor.author | Backman, Spencer | |
dc.contributor.author | Santos, Francisco | |
dc.contributor.author | Chi, Ho Yuen | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2025-02-10T17:20:29Z | |
dc.date.available | 2025-02-10T17:20:29Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 1286-4889 | |
dc.identifier.other | MTM2017-83750-P | es_ES |
dc.identifier.uri | https://hdl.handle.net/10902/35458 | |
dc.description.abstract | In previous work by the first and third author with Matthew Baker, a family of bijections between bases of a regular matroid and the Jacobian group of the matroid was given. The core of the work is a geometric construction using zonotopal tilings that produces bijections between the bases of a realizable oriented matroid and the set of (σ, σ∗ )-compatible orientations with respect to some acyclic circuit (respectively, cocircuit) signature σ (respectively, σ∗). In this work, we extend this construction to general oriented matroids and circuit (respectively, cocircuit) signatures coming from generic single-element liftings (respectively, extensions). As a corollary, when both signatures are induced by the same lexicographic data, we give a new (bijective) proof of the interpretation of TM(1, 1) using orientation activity due to Gioan and Las Vergnas. Here TM(x, y) is the Tutte polynomial of the matroid. | es_ES |
dc.description.sponsorship | Work of S. Backman is supported by the Zuckerman STEM Postdoctoral Scholarship and DFG–Collaborative Research Center, TRR 109 “Discretization in Geometry and Dynamics”. Work of F. Santos is supported by grant MTM2017-83750-P of the Spanish Ministry of Science and grant EVF-2015-230 of the Einstein Foundation Berlin, as well as the Clay Institute and the National Science Foundation (Grant No. DMS-1440140) while he was in residence at MSRI Berkeley, California during the Fall 2017 semester “Geometric and Topological Combinatorics”. Work of C.H. Yuen is supported by NWO Vici grant 639.033.514. | es_ES |
dc.format.extent | 12 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Institut de recherche mathématique avancée | es_ES |
dc.rights | © The Séminaire Lotharingien de Combinatoire | es_ES |
dc.source | Séminaire Lotharingien de Combinatoire, 2019, 82B, 39 | es_ES |
dc.subject.other | Oriented matroid | es_ES |
dc.subject.other | Tutte polynomial | es_ES |
dc.subject.other | Orientation activity | es_ES |
dc.title | Topological bijections for oriented matroids | es_ES |
dc.type | info:eu-repo/semantics/conferenceObject | es_ES |
dc.relation.publisherVersion | https://mat.ub.edu/EMIS/journals/SLC/ | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83750-P/ES/COMBINATORIA Y COMPLEJIDAD DE ESTRUCTURAS GEOMETRICAS DISCRETAS/ | es_ES |
dc.type.version | publishedVersion | es_ES |