Mostrar el registro sencillo

dc.contributor.authorFanelli, Francesco
dc.contributor.authorGranero Belinchón, Rafael 
dc.contributor.authorScrobogna, Stefano
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-02-10T15:42:15Z
dc.date.available2025-02-10T15:42:15Z
dc.date.issued2024-07
dc.identifier.issn1776-3371
dc.identifier.issn0021-7824
dc.identifier.otherPID2019-109348GA-I00es_ES
dc.identifier.otherPID2022-141187NB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/35455
dc.description.abstractSeveral fluid systems are characterised by time reversal and parity breaking. Examples of such phenomena arise both in quantum and classical hydrodynamics. In these situations, the viscosity tensor, often dubbed "odd viscosity", becomes non-dissipative. At the mathematical level, this fact translates into a loss of derivatives at the level of a priori estimates: while the odd viscosity term depends on derivatives of the velocity field, no parabolic smoothing effect can be expected. In the present paper, we establish a well-posedness theory in Sobolev spaces for a system of incompressible non-homogeneous fluids with odd viscosity. The crucial point of the analysis is the introduction of a set of good unknowns, which allow for the emerging of a hidden hyperbolic structure underlying the system of equations. It is exactly this hyperbolic structure which makes it possible to circumvent the derivative loss and propagate high enough Sobolev norms of the solution. The well-posedness result is local in time; two continuation criteria are also established.es_ES
dc.description.abstractPlusieurs systèmes fluides sont caractérisés par une rupture de symétrie et de réversibilité temporelle. Des exemples de telles phénomènes apparaissent à la fois dans l'hydrodinamique quantique et classique. Dans ces situations, le tenseur de viscosité, souvent appelée "viscosité impaire", devient anti-dissipatif. Au niveau mathématique, ce fait se traduit dans une perte de dérivées au niveau des estimations a priori : le terme de viscosité impaire dépend des dérivées du champs de vitesses, pour lequel aucun effet régularisant de type parabolique peut être attendu. Dans ce papier, nous établissons une théorie de caractère bien posé dans les espaces de Sobolev pour un système de fluides incompressibles inhomogènes avec une viscosité impaire. L'étape cruciale de l'analyse consiste dans l'introduction d'un système de bonnes inconnues, qui permettent de mettre en évidence une structure hyperbolique sous-jacente aux équations. Précisément cette structure hyperbolique représente la clé pour éviter la perte de dérivées et propager la régularité Sobolev de la solution. Le résultat de caractère bien posé est local en temps; deux critères de continuation sont aussi établis.es_ES
dc.description.sponsorshipThe work of the first author has been partially supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program "Investissement d’Avenir" (ANR-11-IDEX-0007), and by the projects BORDS (ANR-16-CE40-0027-01), SingFlows (ANR-18-CE40-0027) and CRISIS (ANR-20-CE40-0020-01), all operated by the French National Research Agency (ANR). The work of the second author has been partially supported by the project “Mathematical Analysis of Fluids and Applications” with reference PID2019-109348GA-I00/AEI/ 10.13039/501100011033 and acronym "MAFyA" funded by Agencia Estatal de Investigación and the Ministerio de Ciencia, Innovacion y Universidades (MICIU). Project supported by a 2021 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation. The BBVA Foundation accepts no responsability for the opinions, statements and contents included in the project and/or the results there of, which are entirely the responsability of the authors. This author is also funded by the project "Análisis Matemático Aplicado y Ecuaciones Diferenciales" Grant PID2022-141187NB-I00 funded by MCIN/AEI /10.13039/501100011033 /FEDER, UE and acronym "AMAED". This publication is part of the project PID2022-141187NB-I00 funded by MCIN/AEI /10.13039/501100011033. The research of the third author is supported by the ERC through the Starting Grant project H2020-EU.1.1.-639227.es_ES
dc.format.extent67 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal des Mathematiques Pures et Appliquees, 2024, 187, 58-137es_ES
dc.subject.otherIncompressible fluidses_ES
dc.subject.otherOdd viscosityes_ES
dc.subject.otherDensity variationses_ES
dc.subject.otherHidden hyperbolicityes_ES
dc.subject.otherLocal well-posednesses_ES
dc.titleWell-posedness theory for non-homogeneous incompressible fluids with odd viscosityes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.matpur.2024.05.006es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109348GA-I00/ES/ANALISIS MATEMATICO DE LOS FLUIDOS Y APLICACIONES/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-141187NB-I00/ES/ANALISIS MATEMATICO APLICADO Y ECUACIONES DIFERENCIALES/es_ES
dc.identifier.DOI10.1016/j.matpur.2024.05.006
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 license