Mostrar el registro sencillo

dc.contributor.authorBarcena Rodriguez, Marta
dc.contributor.authorLloret Iglesias, Lara
dc.contributor.authorFerreño Blanco, Diego 
dc.contributor.authorCarrascal Vaquero, Isidro Alfonso 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-02-10T09:40:50Z
dc.date.available2025-02-10T09:40:50Z
dc.date.issued2024-12
dc.identifier.issn1611-3683
dc.identifier.issn1869-344X
dc.identifier.urihttps://hdl.handle.net/10902/35447
dc.description.abstractClassification of cast iron alloys based on graphite morphology plays a crucial role in materials science and engineering. Traditionally, this classification has relied on visual analysis, a method that is not only time-consuming but also suffers from subjectivity, leading to inconsistencies. This study introduces a novel approach utilizing convolutional neural networks - MobileNet for image classification and U-Net for semantic segmentation - to automate the classification process of cast iron alloys. A significant challenge in this domain is the limited availability of diverse and comprehensive datasets necessary for training effective machine learning models. This is addressed by generating a synthetic dataset, creating a rich collection of 2400 pure and 1500 mixed images based on the ISO 945-1:2019 standard. This ensures a robust training process, enhancing the model's ability to generalize across various morphologies of graphite particles. The findings showcase a remarkable accuracy in classifying cast iron alloys (achieving an overall accuracy of 98.9±0.4% and exceeding 97% for all six classes - for classification of pure images and ranging between 84% and 93% for semantic segmentation of mixed images) and also demonstrate the model's ability to consistently identify and graphite morphology with a level of precision and speed unattainable through manual methods.es_ES
dc.format.extent14 p.es_ES
dc.language.isoenges_ES
dc.publisherWiley-VCHes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceSteel Research International, 2024, 95(12), 2400120es_ES
dc.subject.otherCast irones_ES
dc.subject.otherConvolutional neural networkses_ES
dc.subject.otherDeep learninges_ES
dc.subject.otherImage classificationses_ES
dc.subject.otherSemantic segmentationses_ES
dc.titleClassification of cast iron alloys through convolutional neural networks applied on optical microscopy imageses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1002/srin.202400120es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1002/srin.202400120
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International