Mostrar el registro sencillo

dc.contributor.authorEgidazu de la Parte, Beñat
dc.contributor.authorBalbi, Stefano
dc.contributor.authorVilla, Ferdinando
dc.contributor.authorBengoechea, Diego
dc.contributor.authorCurcio, Andrea Celeste
dc.contributor.authorGalván Arbeiza, Cristina
dc.contributor.authorGonzález, Carlos J.
dc.contributor.authorJuanes de la Peña, José A. 
dc.contributor.authorOndiviela Eizaguirre, Bárbara
dc.contributor.authorPeralta González, Gloria
dc.contributor.authorPuente Trueba, Maria Araceli
dc.contributor.authorRamos Manzano, Elvira
dc.contributor.authorRodríguez-Rojo, Concepción N.
dc.contributor.authorPascual, Marta
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-02-06T13:11:12Z
dc.date.issued2025-01-01
dc.identifier.issn0048-9697
dc.identifier.issn1879-1026
dc.identifier.otherPID2021-123597OB-I00es_ES
dc.identifier.otherCEX2021-001201-Mes_ES
dc.identifier.urihttps://hdl.handle.net/10902/35412
dc.description.abstractTidal marshes are coastal systems that provide valuable ecosystem services, highlighting coastal protection and carbon burial. For centuries, these dynamic ecosystems have kept pace with sea level rise through organic and mineral matter accumulation. In the current situation of accelerated sea-level rise and changes in suspended sediment concentrations, the evolution of these systems has gained special attention across scientific fields. Several methodologies like process-based models and machine learning algorithms have been applied to assess the evolution of tidal marshes in different sea level rise and suspended sediment concentration scenarios. However, up to now, these methodologies have not been integrated to assess and model the evolution of marshes. In this study, we have successfully combined a machine learning algorithm with a dynamic process-based eco-geomorphic model to assess and evaluate potential distributions of three Spanish marshes, under a selection of potential sea-level rise and suspended sediment concentrations which may unfold during this century. Results obtained from this study have proven that through the integration of existing methodological approaches and their adaptation to test contexts, we can better simulate the potential evolution of marsh systems on a local scale considering potential sea level rise and suspended sediment concentration changes. Under current sediment supply and public land availability, marshes in Oka estuary, Bay of Santander, and Cadiz Bay could lose 6.7-28.9 %, 33.1-87.5 %, and 41-86.4 % of their area, respectively. The integrated marsh evolution model presented in this work can be extrapolated and/or customised to other coastal and marine systems, fostering its reusabilityes_ES
dc.description.sponsorshipThis research is part of the PRE2022-102042 funded by MICIU/AEI/10.13039/501100011033 and by the María de Maeztu Unit of Excellence 2023-2027 Ref. CEX2021-001201-M, funded by MCIN/AEI /10.13039/501100011033; and by the Basque Government through the BERC 2022-2025 programme. This research is also funded by the European Union Horizon Europe project: MARine Biodiversity and Ecosystem Functioning leading to Ecosystem Services (EC HE - Project 101060937 — MARBEFES – www.marbefes.eu) and by Grant PID2021-123597OB-I00 funded by MICIU/AEI/10.13039/501100011033 and by ERDF/EU. We thank NASA Sea-Level Change Team for developing and hosting the IPCC AR6 Sea-Level Projection Tool.es_ES
dc.format.extent32 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2025. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceScience of the Total Environment. 2025, 958, 178164es_ES
dc.subject.otherTidal marsheses_ES
dc.subject.otherSea level risees_ES
dc.subject.otherSuspended sediment concentrationes_ES
dc.subject.otherMachine learninges_ES
dc.titleEco-geomorphic modelling response of tidal marshes to sea level rise and changes in suspended sediment supplyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.scitotenv.2024.178164es_ES
dc.rights.accessRightsembargoedAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/HORIZON/101060937/MARine Biodiversity and Ecosystem Functioning leading to Ecosystem Services/MARBEFES//es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123597OB-I00/ES/SERVICIOS ECOSISTEMICOS DE LOS SISTEMAS BIOGEOMORFICOS INTERMAREALES: CARBONO AZUL Y RESILIENCIA AL AUMENTO DEL NIVEL DEL MAR EN LA BAHIA DE CADIZ/es_ES
dc.identifier.DOI10.1016/j.scitotenv.2024.178164
dc.type.versionacceptedVersiones_ES
dc.embargo.lift2027-01-01
dc.date.embargoEndDate2027-01-01


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2025. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2025. This manuscript version is made available under the CC-BY-NC-ND 4.0 license