Mostrar el registro sencillo

dc.contributor.authorTristán Teja, Carolina 
dc.contributor.authorFallanza Torices, Marcos 
dc.contributor.authorOrtiz Uribe, Inmaculada 
dc.contributor.authorIbáñez Mendizábal, Raquel 
dc.contributor.authorGrossmann Epper, Ignacio
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-02-06T07:56:34Z
dc.date.available2025-02-06T07:56:34Z
dc.date.issued2024-12-30
dc.identifier.issn1873-6785
dc.identifier.issn0360-5442
dc.identifier.otherPDC2021-120786-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/35406
dc.description.abstractSalinity gradient-based technologies offer a solution for desalination plants seeking clean, uninterrupted elec tricity to support their decarbonization and circularity. This work provides cost-optimal designs of a large-scale reverse electrodialysis (RED) system deployed in a desalination plant using mathematical programming. The optimization model determines the hydraulic topology and RED units’ working conditions that maximize the net present value (NPV) of the RED process recovering salinity gradient energy between brine and treated waste water effluents. We examine how electricity, carbon and membranes prices, desalination plant capacity, and membrane resistance may affect the NPV-optimal design’s competitiveness and performance. We also compare the conventional series-parallel configuration and the NPV-optimal solution with recycling and added reuse alternatives. In the context of soaring electricity prices and strong green financing support, with the use of high-performing, affordable membranes (~10 €/m2 ), RED could save 8 % of desalination plant energy demand from the grid, earning 5 M€ profits and LCOE of 66–126 €/MWh, comparable to other renewable and conventional power technologies. The optimization model finds profitable designs for the entire range of medium-capacity desalination plants. The findings underscore the optimization model effectiveness in streamlining decisión-making and exploiting the synergies of full-scale, RED-based electricity in the energy-intensive water sector.es_ES
dc.description.sponsorshipThis work was supported by the LIFE Programme of the European Union (LIFE19 ENV/ES/000143); the MCIN/AEI/10.13039/ 501100011033 and “European Union NextGenerationEU/PRTR” (PDC2021-120786-I00); and by the MCIN/AEI/10.13039/ 501100011033 and “ESF Investing in your future” (PRE2018-086454).es_ES
dc.format.extent13 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceEnergy, 2024, 313,134005es_ES
dc.subject.otherRenewable energyes_ES
dc.subject.otherGeneralized disjunctive programminges_ES
dc.subject.otherReverse osmosises_ES
dc.subject.otherWastewater treatmentes_ES
dc.subject.otherWater-energy nexuses_ES
dc.titleCost-optimal design of reverse electrodialysis process for salinity gradient-based electricity generation in desalination plantses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.energy.2024.134005es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/LIFE PROGRAMME/LIFE19 ENV%2FES%2F000143/EU/LIFE-3E - Environment-Energy-Economy/LIFE-3E/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PDC2021-120786-I00/ES/APROVECHAMIENTO ENERGETICO DEL GRADIENTE SALINO (EGS). PRUEBA DE CONCEPTO PARA LA INNOVACION Y TRANSFERENCIA DE LA ELECTRODIALISIS REVERSA (EDR) COMO TECNOLOGIA SOSTENIBLE/es_ES
dc.identifier.DOI10.1016/j.energy.2024.134005
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial 4.0 International