Mostrar el registro sencillo

dc.contributor.advisorPalazuelos Calderón, Camilo 
dc.contributor.authorUytterhoeven, Niels
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-02-05T17:28:33Z
dc.date.issued2024-06
dc.identifier.urihttps://hdl.handle.net/10902/35401
dc.description.abstractThe classification of brain networks has emerged as a critical area of research in neuroscience, with implications for understanding various neurological disorders such as ADHD and autism. This thesis focuses on developing algorithms to classify individuals into control and disease groups using network data, with the aim of identifying unique connectivity patterns that distinguish between these groups. The study leverages techniques from network science, machine learning, and deep learning to create robust and interpretable classification algorithms. The methodology involves the use of autoencoder technology to discern unique features between the control and disease groups. Autoencoders, a type of artificial neural network used to learn efficient representations of data, facilitate in-depth analysis and reconstruction of alterations in brain connectivity. By training the autoencoders on brain network data, the study aims to uncover latent structures that can be used to classify individuals with neurological disorders more accurately. Despite employing sophisticated techniques, the results indicate that differentiating between control and disease groups is not straightforward. The subtle and complex nature of brain connectivity patterns presents significant challenges for classification. While the autoencoder models demonstrated some ability to differentiate between the groups, the accuracy was not sufficient for reliable classification. This finding underscores the complexity of brain network data and highlights the need for further research and development of more advanced models and methodologies. The study contributes to the ongoing effort to develop automated diagnostic tools for neurological disorders, providing a foundation for future exploration in brain connectivity dynamics.es_ES
dc.format.extent58 p.es_ES
dc.language.isoenges_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.otherBrain networkses_ES
dc.subject.otherAutism Spectrum Disorder (ASD)es_ES
dc.subject.otherTypically Developing (TD)es_ES
dc.subject.otherStacked denoising autoencoderes_ES
dc.subject.otherSupervised learninges_ES
dc.subject.otherLogistic regressiones_ES
dc.subject.otherDimensionality reductiones_ES
dc.subject.otherFeature extractiones_ES
dc.subject.otherNeuroimaginges_ES
dc.subject.otherClassificationes_ES
dc.subject.otherClusteringes_ES
dc.subject.otherMachine learninges_ES
dc.titleClassification of brain networkses_ES
dc.typeinfo:eu-repo/semantics/masterThesises_ES
dc.rights.accessRightsembargoedAccesses_ES
dc.description.degreeMáster en Matemáticas y Computaciónes_ES
dc.embargo.lift2026-06-13
dc.date.embargoEndDate2026-06-13


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International