Discontinuous transition to chaos in a canonical random neural network
Ver/ Abrir
Identificadores
URI: https://hdl.handle.net/10902/35348ISSN: 1539-3755
ISSN: 1550-2376
ISSN: 2470-0045
ISSN: 2470-0053
Registro completo
Mostrar el registro completo DCAutoría
Pazó Bueno, Diego Santiago
Fecha
2024-07Derechos
© American Physical Society
Publicado en
Physical Review E, 2024, 110(1), 014201
Editorial
American Physical Society
Enlace a la publicación
Resumen/Abstract
We study a paradigmatic random recurrent neural network introduced by Sompolinsky, Crisanti, and Sommers (SCS). In the infinite size limit, this system exhibits a direct transition from a homogeneous rest state to chaotic behavior, with the Lyapunov exponent gradually increasing from zero. We generalize the SCS model considering odd saturating nonlinear transfer functions, beyond the usual choice ɸ(x) = tanh x. A discontinuous transition to chaos occurs whenever the slope of ɸ at 0 is a local minimum [i.e., for ɸ(0) > 0]. Chaos appears out of the blue, by an attractor-repeller fold. Accordingly, the Lyapunov exponent stays away from zero at the birth of chaos.
Colecciones a las que pertenece
- D15 Artículos [846]
- D15 Proyectos de Investigación [161]
- D52 Artículos [1337]
- D52 Proyectos de investigación [424]